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Effective Models of Heat Conduction in Composite Electrodes
Weiyu Li and Daniel M. Tartakovskyz

Department of Energy Science and Engineering, Stanford University, Stanford, California 94305, United States of America

Thermal effects impact battery performance, safety, and health. Existing models of heat generation, conduction, and dissipation in
batteries account for distinct physicochemical properties of the active material and electrolyte but routinely disregard the presence
of the carbon binder domain (CBD), which ensures the electrodes’ cohesiveness and structural stability. We present a homogenized
thermal model for a spherical active particle coated with CBD and immersed in a liquid electrolyte. The model replaces this
composite particle with a homogeneous particle whose equivalent thermal conductivity and other properties preserve the amount of
released heat and heat flux at the solid/electrolyte interface, for a given ambient temperature. The effective thermal conductivity is
expressed in terms of the volume fraction of the active material in the mixture and the electrochemical and thermal properties of
both the active material and CBD. This analytical expression for thermal conductivity can be readily integrated into thermal
simulations at either device-scale or pore-scale, without adding computational complexity. Consequently, it provides a means to
account for CBD in models used for battery design and management.
© 2023 The Electrochemical Society (“ECS”). Published on behalf of ECS by IOP Publishing Limited. [DOI: 10.1149/1945-7111/
acfdd4]
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Thermal effects play a crucial role in the performance, safety, and
overall health of batteries. Heat is generated during both charging
and discharging, which increases a battery’s internal temperature.
Major heat sources include the irreversible Joule/Ohmic heating in
the electrode and electrolyte, irreversible reaction heat, and rever-
sible entropic heat at the electrode/electroyte interfaces.1,2 The
accumulation of excessive heat within the battery can have adverse
effects such as electrolyte decomposition and thermal runaway.3,4

Quantitative understanding of heat conduction, generation and
dissipation is necessary to uncover the impact of electrodes’
microstructure on a battery’s thermal behavior at the microscale,5

to characterize thermal properties at the cell level, and to implement
efficient thermal management at the system level.6,7 Additionally,
electrochemical reactions and transport properties (diffusion coeffi-
cient, conductivity) are temperature sensitive.

The vast majority of experimental research on thermal phe-
nomena in batteries is conducted at the cell and system levels,
including cell-level thermal abuse measurements and thermal run-
away propagation in battery packs.8–12 The relative paucity of
experimental studies at the micro-scale13,14 is primarily due to
technical challenges of mapping out the internal temperature field
through non-destructive in situ measurements.15 In this situation,
mathematical modeling presents a viable tool to estimate the internal
temperature distribution within a cell. Despite their importance, most
of such models are relatively low-fidelity. Representative examples
include lumped-parameter models5,16–18 or models that treat the
cell’s components as homogenized.19–21 While these models often
yield accurate assessment of the overall cell and system perfor-
mance, they are not designed to capture the intricate effects of a
battery’s microstructure. They fail to adequately represent thermal
processes at the particle level and heat generation at the electrolyte-
solid interfaces, e.g., the formation of local hotspots. Further
refinements of modeling approaches are needed to account for these
microstructural complexities and to improve the understanding of
battery thermal behavior. Several studies have emphasized the
significance of improving the prediction of effective thermal con-
ductivity of battery components.22–24

The ubiquitous presence of binder and conducting carbon,
collectively known as the carbon binder domain (CBD), introduces
additional complications. CBD is used in lithium-ion and lithium-
metal batteries to improve the mechanical integrity and electrical
conductivity of their electrodes. Previous studies have illustrated
CBD’s effects on mass and charge transport in the electrodes,25,26

but its influence on thermal conduction remains unexplored, even
though it has the potential to act as either a heat insulator or a heat

conductor within the electrode structure. Therefore, it is necessary to
develop a mathematical model that relates measurable characteristics
of active particles and CBD, such as their volume fractions and
thermal properties (thermal conductivities, heat capacities, etc.) to
the bulk thermal properties (thermal conductivities, heat capacities,
etc.) of the composite electrode material. Existing theoretical
relations, such as Wiener bounds or Hashin-Shtrikman bounds,27

are inadequate to determine the effective thermal conductivity of the
battery electrodes because they do not guarantee the energy
conservation in the presence of various heat generation sources
that are coupled with mass and charge transport in the electrode.

We address the aforementioned challenges by presenting an
equivalent/homogenized model of heat transfer in a spherical active
particle coated by CBD and immersed in a liquid electrolyte. The
model accounts for multiple sources of heat generation, including the
Joule-Ohmic heating and entropic heating, which occur within the
electrode and CBD and at their interfaces. The model ensures the
global conservation of mass, energy, and charge. A key outcome of
our model is a semi-analytical expression for the effective thermal
conductivity of the homogeneous particle, which comprises the
volume fractions and transport properties of the constitutive phases
and takes a closed form at large time. This result, coupled with the
derivation of the effective ionic diffusivity and electrical
conductivity,25 completes a comprehensive study of effective physi-
cochemical properties of composite (active-material/CBD) electrodes.

Our effective heat transfer model can be integrated into existing
thermal models at the device level to investigate the impact of the
CBD’s physical properties (thermal conductivity, volume fraction, etc.)
on heat transfer within the battery cell. Our model can also be deployed
in pore-scale simulations by lumping together the active material and
CBD. Our analytical expression offers a distinct advantage, as it can be
directly used in these models without adding computational com-
plexity. Our research contributes to the advancements in battery
technology by providing a deeper understanding of the thermal aspects
of composite electrodes. By considering the complex interplay
between heat transfer, ion diffusion and intercalation, and charge
transport, our electrochemical-thermal model provides a valuable tool
for optimization of the fractions of each component in the composite
electrode to enhance the overall battery performance.

Problem Formulation

Our effective heat-transfer model is formulated in a manner
consistent with the previous study of mass and charge transport in
composite electrodes.25 We consider a spherical active particle of
radius r1 that is coated with a CBD layer, giving rise to a composite
sphere of radius r2 (Fig. 1). The active material has diffusion
coefficient D1 (m2/s), ionic conductivity K1 (S/m), density ρ1zE-mail: tartakovsky@stanford.edu
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(kg/m3), heat capacity cp1
(J/kg/K), and thermal conductivity λ1 (W/m/

K); the corresponding quantities for CBD are denoted by D2, K2, ρ2,
cp2

and λ2. Li-ion intercalation takes place at the active particle’s
surface, i.e., at r= r1, which induces reaction heat flux reac (J/m2/s)
and entropic heat flux entr (J/m2/s).1 The sphere is immersed in an
electrolyte with Li-ion concentration ce (mol/m3), electric potential φe
(V) and temperature Te (K); uniform electric field E in the x direction
represents electric field in a working battery’s electrode. Ionic
resistance under the electric potential gradient gives rise to the
Joule/Ohmic heating in the solid electrode, qohm (J/m3/s). We ignore
the contributions of heat transfer due to mixing, which is associated
with concentration gradients within the active material and CBD, and
heat of phase change. Both are insignificant compared to the Ohmic
heat, reaction heat and entropic heat.2 Binder decomposition and side
reactions between the active material and CBD are ignored as well.

An equivalent representation of this composite particle is a
homogeneous sphere of radius r2 that has density ρ*, heat capacity
cp*, diffusion coefficient D*, ionic conductivity K* and thermal
conductivity λ*. These characteristics are such that, for a given outer
surface temperature, the two spheres have the same heat flux from
the electrolyte across their outer surfaces and the same amount of
heat release (while enforcing mass and charge conservation). Our
goal is to express these equivalent parameters in terms of the volume
fractions (V r r1 1

3
2
3= and V2= 1− V1) and physical and electro-

chemical properties of each phase.

Heat transfer in active core and CBD coating.—Given the
composite particle’s geometry, we deploy a spherical coordinate
system r= (r, θ, φ)⊤. Spatiotemporal evolution of temperatures (K)
in the active material, T1(r, t) with 0 ⩽ r ⩽ r1, and the CBD coating,
T2(r, t) with r1 ⩽ r ⩽ r2, is described by heat equations,1

c
T

t
q
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J

J

,

, 1, 2. 1
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i i

i i i
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∂
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= − ∇ = [ ]

Here, qohm,i is the irreversible Ohmic heat generation induced by the
ionic resistance under the gradients of electric potentials in each
phase, φ1(r, t) with 0 ⩽ r ⩽ r1 and φ2(r, t) with r1 ⩽ r ⩽ r2,

q K i, 1, 2. 2i i i iohm, ϕ ϕ= ∇ ·∇ = [ ]

Equations 1 and 2 are defined on 0< r< r1 for i= 1, and on
r1 < r< r2 for i= 2; both for time t> 0. They are coupled by
enforcing the continuity of the temperatures, Ti, and the energy
balance at the interface r= r1,

T r t T r t, , , 31 1 2 1( ) = ( ) [ ]
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The irreversible reactive heat flux at the interface r= r1,

J U c c T, , 5reac 1 1 2 1 1,max ϕ ϕ= ·[ − − ( )] [ ]

relates the intercalation current density J1(r1, t) (A/m2) to the
activation overpotential r t r t U c r t c, , ,1 1 2 1 1 1 1,maxϕ ϕ( ) − ( ) − ( ( ) ).
Here, U is the open circuit potential (V) that depends on both the
Li filling fraction c c1 1,max and temperature T; c1(r, t) is the Li
concentration (mol/m3); and c1,max is the maximum Li concentration
that could be stored in the active particle. The reversible entropic
heat flux,

J T
U c c T

T

,
, 6entr 1 1

1 1,max
 =

∂ ( )
∂

[ ]

is induced by intercalation/de-intercalation of Li ions at the active
particle surface r= r1.

At the interface between the composite particle and liquid
electrolyte, r= r2, both temperature and the radial component of
heat flux are continuous,

T r t T r t
T

r
r t

T

r
r t, , , , , . 7e 2 2 2 e

e
2 2

2
2λ λ( ) = ( ) ∂

∂
( ) = ∂

∂
( ) [ ]

Here, Te(r) with r ⩾ r2 is the electrolyte temperature, and λe denotes
the thermal conductivity of the electrolyte. The problem formulation
is completed by specifying the boundary and initial conditions

T r t T T ir0, ; , 0 , 1, 2. 8i1 in( = ) < ∞ ( ) = = [ ]

Heat transfer in equivalent particle.—The equivalent model
treats the composite particle as a homogeneous material with
equivalent density ρ*, heat capacity cp*, and thermal conductivity
λ*, etc. (Fig. 1). Equations 1 and 2 are replaced with

c
T

t
q TJ J, 9p heat ohm heat* * * * * *ρ λ∂

∂
= −∇· + = − ∇ [ ]

Figure 1. Left: Spherical composite particle of radius r2 comprising an active material core of radius r1 coated with a CBD layer. The active material has
diffusion coefficient D1, ionic conductivity K1, and thermal conductivity λ1; the corresponding quantities for CBD are denoted by D2, K2, and λ2. Right: Its
homogeneous counterpart with equivalent diffusion coefficient D*, ionic conductivity K*, and thermal conductivity λ*. The red lines denote locations of the
intercalation surface. The sphere is immersed in an electrolyte with Li-ion concentration ce, electric potential φe, and uniform electric field E = − ∇φe.
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and

q K . 10hohm * * ϕ ϕ= ∇ ·∇ [ ]

These equations describe the spatiotemporal evolution of tempera-
ture, T(r, t), in the equivalent homogeneous particle, i.e., for
0< r< r2. The Ohmic heat generation, qohm

* , involves the equivalent
ionic conductivity K* (S/m) and the ionic conductivity correction
factor h (-). The latter is determined below by requiring the amount
of heat flux entering the composite and homogenized particles at
r= r2 to be the same.

The interfacial and boundary conditions 3–7 are replaced with the
boundary conditions at r= r2,

T r t T r t, , , 11ae 2 2( ) = ( ) [ ]
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The equivalent reactive heat flux, reac* , and entropic heat flux, entr* ,
at the electrolyte-solid interface r= r2 are given by

J U c c T, , 12reac e max* ϕ ϕ= ·[ − − ( )] [ ]

JT
U c c T

T

,
. 13entr

max* = ∂ ( )
∂

[ ]

The intercalation current density, J(r2, t) (A/m
2), and the maximum

Li concentration that can be stored in the homogenized particle, cmax,
are chosen to ensure their consistency with the composite particle.25

Boundary and initial conditions 8 are replaced with

T r t r t T Tr0, ; 0, ; , 0 . 14inϕ( = ) < ∞ ( = ) < ∞ ( ) = [ ]

Thermal problems 1–8 and 9–14 are coupled with heat transfer
equations for the electrolyte and with transport equations for both the
solid particles and the electrolyte. The following simplifying assump-
tions facilitate the derivation of the effective properties of a composite
particle. First, since interfacial conditions 7 and 11 hold for all values
of the liquid electrolyte temperature at the interface, Te(r2, · ), we treat
the latter as given rather than computed from the heat transport
equation in the liquid electrolyte.25 Second, while some relevant
transport parameters, such as diffusion coefficients and intercalation
rates, are concentration- and temperature-dependent, we treat them as
piece-wise constants. This is consistent with the state-of-the-art
pseudo two-dimensional (P2D) models of electrochemical transport
in batteries (e.g., Ref. 26 and references therein); rather than dealing
with concentration-dependent diffusion coefficients, D=D(c), these
models use different constant values D for different values of the state
of charge, c r t c,2 max( ) . Third, we consider a constant current density
i with magnitude I (A/m2) at the electrode/electrolye interface, r= r2
(Fig. 1) and assume azimuthal symmetry.

Equivalent Thermal Properties of Solid Phase

The density and heat capacity of the equivalent homogeneous
particle are computed as27

V V , 151 1 2 2*ρ ρ ρ= + [ ]

c
V c V c

V V
. 16p

1 1 p 2 2 p

1 1 2 2

1 2* ρ ρ
ρ ρ

=
+
+

[ ]

These and other relations are derived by ensuring that the homo-
genized particle retains key integral characteristics of the original
composite particle. For example, the requirement that the two
particles have the same total Li-ion intercalation flux yields

(Eq. 17 in Ref. 25)

r J r t r J r t t, , , 17D D1
2

1 1 2
2

2 τ τ( ) = ( − ) ( − ) [ ]

where (·) is the Heaviside function, and the reaction delay time
r r DD 2 1

2
2τ = ( − ) accounts for the shift of the intercalation inter-

face from the inner radius r= r1 to the outer radius r= r2. The
thermal conductivity of an equivalent medium is known to exhibit
transitory effects at early times.28 We define λ*(t) and th ( ) as the
thermal conductivity and the ionic conductivity correction factor of
the homogenized sphere that produce the average temperature T t¯ ( )
corresponding to the average temperature of the composite sphere,
i.e.,

r
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and satisfy the integral form of the energy balance in 17. In the
Appendix, we derive integral equations satisfied by λ*(t) and t ;h ( )
after the transitory effects dissipate, these properties reach their
constant asymptotes given by the weighted harmonic means of K1

and K2, and λ1 and λ2:
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Here, the functions a(V1), b(V1) and c(V1) are defined in Eq. A·26b
of the Appendix, and
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is the equivalent ionic conductivity.25 If the sphere consists entirely
of the active material, i.e., if V1 = 1, then these expressions reduce to

1h = and λ* = λ1, as they should.

Results and Discussion

The ionic conductivity correction factor h is introduced to
ensure that the same amount of heat enters the composite and
homogenized particles from the electrolyte, in the presence of the
Ohmic heat generation in CBD, qohm,2 = K2∇φ2 · ∇φ2. Figure 2
exhibits the functional dependence, given by Eq. 19, of h on both
the volume fraction of the active material in the mixture, V1, and the
physical properties of the active material and CBD. The latter
properties are reported as the ratio of ionic conductivities, K2/K1, and
the ratio of thermal conductivities, λ2/λ1. Since less Ohmic heat is
generated in CBD than in the active material, the correction factor

h decreases as V1 increases (Fig. 2a), i.e., as the amount of CBD in
the composite decreases. Since the equivalent ionic conductivity K*

increases with V1 in accordance with Eq. 21, the ratio Kh ˜ *
decreases with V1 (Fig. 2b).

The magnitude of the correction function h increases as the
contrast between ionic conductivities of the CBD and active
material, K2/K1, becomes more pronounced (Fig. 2a), due to the
reduction in Ohmic heat generation in CBD. It follows from Eqs. 21
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and 19 that, for a fixed K1,

lim 1 22
K

h
2

 = [ ]
→∞

and

K V Klim , 23
K

h 1
1 3

1
2

 *˜ = [ ]
→∞

−

as no Ohmic heat is generated in CBD with large ionic conductivity
(K2 → ∞).

Figure 3 exhibits the dependence of equivalent thermal con-
ductivity λ*—normalized with the active material’s thermal con-
ductivity, λ1—on the volume fraction of the active material in the
composite, V1. The function V V1 1 1λ λ λ˜*( ) ≡ *( ) is computed with
Eq. 20, for the thermal conductivity ratio λ2/λ1 = 0.01 and several

values of the ionic conductivity ratio K2/K1. The function
V1λ λ˜* = ˜*( ) is non-monotonic: λ̃* first increases and then decreases

with V1, reaching 1λ̃* = when V1 = 1. The maximum value of
V1λ λ˜* = ˜*( ) in Eq. 20 is attained atV1

max for which ∂λ*/∂V1 = 0. The
maximum thermal conductivity of the mixture is Vmax 1

maxλ λ* = *( ).
To gain physical insight into this non-monotonic behavior of
V1λ̃*( ), we rewrite Eq. 18 as

E
c

c
E

c

c
E , 24

p

1 p
1

p

2 p
2

1 2

* * * *ρ
ρ

ρ
ρ

= + [ ]

in terms of the internal energies (J/m3) in the active material, CBD
and the homogeneous particle,

Figure 2. Dependence of (a) ionic conductivity corrector h and (b) its normalized counterpart Kh ˜ * on the volume fraction of the active material in the
composite, V1. It is computed with Eq. 19 for the thermal conductivity ratio λ2/λ1 = 0.01 and the ionic conductivity ratios K2/K1 = 0.00178, 0.0178, 0.178 and
1.78. In (b), K K K1˜ * = * denotes the equivalent ionic conductivity of the homogeneous particle normalized with the ionic conductivity of the active material.

Figure 3. Dependence of equivalent thermal conductivity λ*, normalized
with the active material’s thermal conductivity λ1, on the volume fraction of
the active material in the composite, V1. It is computed with Eq. 20 for the
thermal conductivity ratio λ2/λ1 = 0.01 and the ionic conductivity ratios
K2/K1 = 0.00178, 0.0178, 0.178 and 1.78.

Figure 4. Internal energy, normalized by respective volumetric heat
capacity, in the active material, E c1 1 p1ρ( ), in CBD, E c2 2 p2ρ( ), and in the
homogeneous particle, E cpρ( * *), as function of the volume fraction of the
active material in the composite, V1. The ratios of the ionic conductivity and
thermal conductivity are set to K2/K1 = 0.0178 and λ2/λ1 = 0.01, respec-
tively.
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respectively. The expressions for the temperature distribution in the
active material, CBD, and the homogeneous particle are given by
Eqs. A·35–A·36 in the Appendix. The dependence of these energies
on V1 is plotted in Fig. 4, for K2/K1 = 0.0178 and λ2/λ1 = 0.01.
When the active material volume fraction V1 is small,
E c E c2 2 p 1 1 p2 1

ρ ρ( ) ≫ ( ) and E c E cp 2 2 p2
ρ ρ( * *) ≈ ( ). Figure 4 re-

veals that both E c2 2 p2
ρ( ) and E cpρ( * *) exhibit an almost expo-

nential decay with V1. Consequently, the mean temperature in the

homogeneous particle, T E cp
r

3

4 2
3 ρ¯ = ( * *)

π
, also decreases nearly

exponentially. Since Kh * decreases linearly with V1 (Fig. 2), λ̃*

increases with V1 according to T I r

K45
h

2
2
5¯ = * *λ
. In contrast, when V1 is

large, E c E c1 1 p 2 2 p1 2
ρ ρ( ) ≫ ( ) and E c E cp 1 1 p1

ρ ρ( * *) ≈ ( ). As V1

continues to increase, E c1 1 p1
ρ( ) and E cpρ( * *) experience a slight

increase and, thus, the mean temperature in the homogeneous
particle increases as well. Furthermore, since Kh * decreases with
V1 (Fig. 2) for large values of V1, λ̃* decreases with V1.

For a given small V1, smaller values of the ionic conductivity
ratio K2/K1 give rise to smaller values of the effective thermal
conductivity λ* (Fig. 3). Large values of V1 have the opposite effect:
smaller values of K2/K1 induce larger values of λ*. That is because
E c E cp 2 2 p2

ρ ρ( * *) ≈ ( ) when V1 is small (Fig. 4). Combining
Eqs. 19, 25, A·35b and A·36, we obtain

K
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−

which shows that λ* increases linearly with K2/K1. On the other
hand, if V1 is large, E c E cp 1 1 p1

ρ ρ( * *) ≈ ( ) and the mean temperature
of the homogeneous particle is independent of K2. Since smaller
values of K2/K1 correspond to larger values of Kh ˜ * (Fig. 2), λ*

decreases with K2/K1 when V1 is large.

Figure 3 also suggests the existence of a critical value of V1,
denoted by V1

cr ( V0 11
cr< < ), for which λ* becomes independent of

K2/K1. This critical value V1
cr is a solution of the algebraic equation
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b V c V
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1 3 3
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λ
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which is derived from Eqs. 19 and 20. The critical volume fraction
V1

cr is a function of the thermal conductivity ratio λ2/λ1. When

V V1 1
cr= , the effective thermal conductivity Vcr 1

2 3λ̃* = − .
Figure 5 shows the dependence of ionic conductivity corrector h

and equivalent thermal conductivity λ̃* on the volume fraction V1

and the thermal conductivity ratio λ2/λ1. According to Eq. 19, h is
independent of λ2/λ1, while the latter significantly affects λ̃*, as
predicted by Eq. 20.

Conclusions

We developed an equivalent heat-conduction model for the
composite electrode consisting of a spherical active-material particle
coated with CBD and immersed in a liquid electrolyte. The model
replaces this composite sphere with a homogeneous sphere of
equivalent thermal conductivity and with equivalent heat-generation
terms (Joule/Ohmic heat, reactive heat, and entropic heat inside the
particle and on its surface). The equivalent properties are defined
such that, for a given outer surface temperature, the two spheres
have the same heat across the solid/electrolyte interface and the same
amount of heat release (while enforcing mass and charge conserva-
tion). Our key result is an analytical expression for the effective
thermal conductivity, which is given in terms of the volume fraction
of the active material in the composite and the electrochemical and
thermal properties of the active material and CBD. Our analysis
leads to the following major conclusions.

• Our model provides an easy-to-use means for quantitative
assessment of CBD’s impact on thermal properties of composite
electrodes. Consider an electrode with CBD volume fraction of 0.1
and the ratios of thermal and ionic conductivities of CBD and active
material of 0.01 and 0.0178, respectively. Ignoring CBD, as is
current practice, would overestimate the composite’s thermal con-
ductivity by approximately 400%.

Figure 5. Dependence of (a) ionic conductivity corrector h and (b) normalized equivalent thermal conductivity λ̃* on the volume fraction of the active material
in the composite, V1. The graphs are computed with Eqs. 19 and 20, for the ionic conductivity ratio K2/K1 = 0.0178 and the thermal conductivity ratios
λ2/λ1 = 0.0001, 0.001, 0.01 and 0.1.
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• The ionic conductivity factor in our model accounts for the
Joule/Ohmic heat generation within CBD. It ensures that the same
amount of heat enters both the composite and homogeneous
particles. This factor equals 1 in the absence of Ohmic heat
generation in CBD.

• Our expression for the effective thermal conductivity provides
a valuable insight for the composite electrode’s optimal design. It
identifies the active material’s volume fraction that maximizes the
composite’s thermal conductivity, for given thermal and ionic
conductivity ratios between CBD and the active material.

• The simplicity of our equivalent electrochemical-thermal
parameterization facilitates its integration into pore- and device-
scale models of Li-ion and Li-metal batteries. These models can now
account for the presence of CBD and the physicochemical char-
acteristics of composite electrodes, without extra computational
expense.

Physical insights gained from our study offer guidance for the
optimal design of composite electrodes. Our effective model is not
limited to studying the effects of CBD; it can also be extended to
model novel composite anode and cathode materials, such as silicon
coated with carbon or lithium iron phosphate coated with carbon.
The use of our model to explore the thermal behavior of these
materials will provide valuable information for their integration into
advanced battery systems. In addition to composite electrodes, future
work involves the study of thermal effects that impact dendrite
growth and the formation of local hotspots in Li-metal and all-solid-
state batteries.29,30
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Appendix. Effective Thermal Conductivity
Making use of Eq. 17, we rewrite the heat flux r t,int 1 ( ) in 4 as

J r t
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where c r t c r t c, ,1 1 1,max˜ ( ) = ( ) . The requirement that the total
amount of heat generated by (de)intercalation in the composite and
homogenized particles be the same translates into
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The derivation of the effective ionic conductivity K* ensures that25

r t r t r t r t, , , , . A 31 1 2 1 2 e 2ϕ ϕ ϕ ϕ( ) − ( ) = ( ) − ( ) [ · ]

By imposing the condition

T r r t T r r t, , , A 4D1 1 2 τ( = ) = ( = − ) [ · ]

we ensure that the effective diffusion coefficient D* satisfies the
conditions25
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where c r t c r t c, , max˜( ) = ( ) , by construction. These conditions on
the intercalation surfaces of the composite (r= r1) and homogenized
(r= r2) particles automatically satisfy Eq. A·2. This result enables us
to define the effective thermal conductivity λ*. Indeed, accounting
for Eq. 11b and the interfacial relations A·3–A·6, we obtain an
equation for λ*(t),
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It remains to compute the temperature gradients in the homogenized
and composite particles.

In the derivations below, we take the outer surface temperature
Te(r2, t) to be constant Te = Tin. Without loss of generality, we set
the initial temperature to Tin= 0 (otherwise, one can repeat our
analysis for Ti − Tin and T− Tin). The continuity conditions at the
interfaces r= r1 and r= r2 become

T r r t T r r t T r r t, , , 0, A 81 1 2 1 2 2( = ) = ¯ ( = ) = ¯ ( = ) = [ · ]

where T r t T r t, 1 2 , , sin d2 0 2∫ θ θ θ¯ ( ) = ( ) ( )
π

is the angle-average

temperature.

A.1. Temperature in equivalent sphere.—Given the azimuthal
and polar symmetry, Eq. 9 takes the form

c
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The assumption of azimuthal and polar symmetry enables one to
solve the Laplace equations for electric potentials in polar
coordinates,25 transforming Eq. 10 into q Khohm  ϕ ϕ* = *∇ ·∇ =

K K Kh ϕ ϕ( *∇ · *∇ ) * = K I Ki ih h
2 (− )·(− ) * = *. This equation

is rewritten in terms of the rescaled time,
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and the new dependent variable u(r, t)= rT(r, t) as
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where hh h  = ( ( )) and h λ λ* = *( ( )), and t h = ( ) is given
implicitly by Eq. A·10. Accounting for the boundary and initial
conditions 14 with Tin= 0, the Laplace-transformed (with respect to  )
solution of Eq. A·11 is

u r A
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, e e
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where λ is the Laplace-transform variable, and s cpλ ρ= * *. The
constant of integration A is obtained from the Laplace transform of
the boundary condition 11a, u r , 02 λˆ ( ) = :
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This yields the Laplace-transformed temperature in the equivalent
sphere
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The inverse Laplace transform, T
1− , of T r, Tλˆ ( ) is given by the
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A.2. Temperature in Composite Sphere.—A.2.1. Solution
for active material.—Given the azimuth and polar symmetry,
Eq. 1 with i= 1 takes the form
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Accounting for the initial and boundary conditions 8 with Tin = 0,
the Laplace-transformed solution of Eq. A·17 is
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where λ is the Laplace variable, and s c1 1 p 11
λρ λ= . The constant of

integration A1 is obtained from the Laplace transforms of the
auxiliary conditions 3and A·8:
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The Laplace-transformed temperature in the active material is
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A.2.2. Solution for CBD.—Unlike the Ohmic heat generation in
the active material, qohm,1, the Ohmic heat generation in CBD,
qohm,2 = K2∇φ2 · ∇φ2, is a function of both distance r and polar
angle θ. It is computed from the solutions of the Laplace equation for
electric potential in polar coordinates,25
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The angle-averaged Ohmic heat generation in CBD, q rohm,2¯ ( ), is
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Given the lack of polar symmetry, Eq. 1 with i= 2 is written as
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For the angle-averaged temperature, T r t,2̄ ( ), this gives
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As the CBD thickness, r2 − r1, is much smaller than the composite
particle radius r2, we approximate the inhomogeneous term in
Eq. A·25 via a Taylor series expansion around r= r2,
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Figure 6 demonstrates the accuracy of this approximation when the
CBD thickness is small.

Accounting for the initial and boundary conditions 8 with
Tin = 0, the Laplace-transformed solution of Eq. A·25 is
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The constants of integration A2 and B2 are obtained from the Laplace
transforms of the auxiliary condition A·8, u r u r, , 02 1 2 2λ λ¯̂ ( ) = ¯̂ ( ) = ,
as

A
F r F re e

e e
, A 29

s r s r

s r r s r r2
2 1

2 1 2 2

2 2 1 2 2 1
=

ˆ ( ) − ˆ ( )
−

[ · ]
− −

− ( − ) ( − )

B
F r F re e

e e
. A 30

s r s r

s r r s r r2
1 2

2 2 2 1

2 2 1 2 2 1
=

ˆ ( ) − ˆ ( )
−

[ · ]− ( − ) ( − )

Hence, the Laplace-transformed temperature in CBD is

T
I

c rK

ar

r
br cr r r r

e e

, , A 31a

r r s r r s
2

2

2
2 p 2

2 2

2

2
2 1 2

2

2 2 1 2

⎤
⎦⎥

λ ρ
α β

γ

¯̂ = [ +

+ + + + ⩽ ⩽ [ · ]

−( − ) −( − )

where γ= 2a/(s2r2),

r

e e
, A 31b

s r s r1
1

1 1 1 1
α =

−
[ · ]−

A 31c

ar r br cr ar br cr e

e e
,

r r s

s r r s r r2
1
2

2 1 2 2 2 2 2 1 2

2 2 1 2 2 1

[ · ]

α
γ γ

=
−( + + + ) + ( + + + )

−

( − )

− ( − ) ( − )

A 31d

ar br cr ar r br cr e

e e
.

r r s

s r r s r r2
2 2 2 1

2
2 1 2 2 1 2

2 2 1 2 2 1

[ · ]

β
γ γ

=
−( + + + ) + ( + + + )

−

( − )

− ( − ) ( − )

and a, b and c are defined in Eq. A·26b.

A.3. Equations for equivalent thermal properties.—
Substitution of Eq. A·15 into the definition of effecting properties
λ* and h in Eq. 18 yields two coupled nonlinear integral equations
for λ*(t) and th h = ( ),
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We compute the inverse Laplace transforms, T1(r1, t) and T2(r2, t),
either numerically via the subroutine INVLAP31 from the MATLAB
File Exchange or analytically for large times t and steady state, as
described below.

A.4. Asymptotic expressions for large time.—For large t, i.e.,
for small λ, the temperature in the composite sphere, Eq. A·31,
behaves asymptotically as
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Similarly, the large-time asymptote of the temperature in the
homogenized sphere is obtained from Eq. A·15 as
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Substitution of Eqs. A·35 and A·36 into Eqs. A·32 and A·33 leads to
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Figure 6. The non-dimensionalised inhomogeneous term rq r cohm,2 2 p2ρ¯ ( ) ( )
in Eq. A·25 and its approximation in Eq. A·26. Both are plotted against the
normalized distance r r r2˜ = .
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and
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where δ= r1/r2. Expressing these relations in terms of the volume
fraction V1 gives Eqs. 19 and 20.
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