
1.  Introduction
Smart agriculture relies on modern data collection and analysis technologies to reduce water consumption and 
increase crop yield. In the process, the data collected by a network of soil-moisture sensors are used to improve 
predictions of infiltration rate (Wang & Tartakovsky,  2011), wetting depth (Sinsbeck & Tartakovsky,  2015), 
evapotranspiration (ET) rate (Li et al., 2021), etc. We focus on ET estimation, because its improved accuracy is 
pivotal to the optimization of crop irrigation (Martín et al., 2021), the assessment of the impact of inundation 
(Ban et al., 2018), etc. A prime example of such strategies for sustainable development is drip irrigation, which 
is mainly deployed in areas facing severe water scarcity (Lamm et al., 2012; Latif et al., 2016), for crops such as 
cotton and maize (Sampathkumar et al., 2012). Around 2.9 million acres of croplands in California are equipped 
with drip irrigation systems, which make up about 60% of all drip irrigation in the US (Anderson, 2019).

Data-driven estimation of ET usually invokes the assumption of vertical, one-dimensional (1D) flow, such that 
soil-moisture sensors are placed within a 1D soil column with homogeneous soil properties (Breña Naranjo 
et al., 2011; Galleguillos et al., 2017; Parajuli et al., 2019). A key advantage of ensemble-based (Bayesian) data 
assimilation (DA) methodologies is that their estimates of the relevant system parameters and state variables are 
equipped with uncertainty (error) bounds (Boso & Tartakovsky, 2022). Among these tools, ensemble Kalman 
filter (EnKF) has gained popularity because of computational expediency; among other hydrologic applications, 
it was used to estimate, from soil-moisture sensor-array data, water content and total ET rate (Pan & Wood, 2006; 
Reichle et al., 2008) and spatial distributions of ET rates and root water-uptake (Li et al., 2021) in vertical (1D) 
soil columns.

The vertical-flow assumption alleviates the computational cost of ensemble-based DA techniques, for example, 
variational DA, EnKF and particle filters, and is arguably adequate at the basin scale. At the field scale of interest 
to smart agriculture, the 1D assumption implies a homogeneous soil with sprinkler/spray irrigation patterns that 
are similar to rainfall. It stands to reason that this assumption fails for drip irrigation, which results in two- or 
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three-dimensional (2D or 3D) infiltration patterns. Local soil heterogeneity magnifies the horizontal component 
of the flow velocity regardless of the irrigation pattern. To alleviate the high computational cost of 2D or 3D 
ensemble-based computations, the relatively few attempts to estimate total ET rates from soil-moisture data found 
it necessary to replace the numerical solution of the 2D/3D Richards equation with the water balance approach 
(Karandish & Šimŭnek, 2016; He et  al.,  2018; do Nascimento et  al.,  2021). This strategy is not designed to 
capture the spatiotemporal root water uptake profile, except during the dry period (Hupet et al., 2002).

Our goal is to design computationally efficient implementations of EnKF and maximum likelihood estimation 
(MLE) to infer the ET rate from soil-moisture data in high-dimensional settings relevant to smart agriculture. We 
extend the DA methodologies of Li et al. (2021) from 1D to higher dimensions. By treating the sink (ET) term 
in the Richards equation as a state variable, which is being updated during the DA procedure, these 1D tech-
niques achieve the up to two orders of magnitude computational speedup vis-à-vis their standard counterparts that 
update soil moisture. We use a series of numerical experiments to demonstrate that similar speed-up is observed 
in a 2D heterogeneous soil (10 m in width and 1.5 m in depth) with a spatially varying root density function, a 
setting representative of drip irrigation (do Nascimento et al., 2021).

Starting with a problem description (Section 2), we formulate our DA methodologies in a fully vectorized form 
suitable for high dimensions (Section 3). In Section 4, we generate a synthetic 2D agricultural plot, for which the 
soil moisture is computed by solving numerically the Richards equation with a known sink term; a sensor network 
is deployed to collect the soil moisture data (the known solution corrupted by measurement noise) for a period 
of time during which several cycles of drip irrigation take place. Our versions of EnKF and MLE are used in 
Section 5 to reconstruct the sink term from these sparse and noisy data; the comparison with the sink terms used 
to generate the data allows us to ascertain the prediction accuracy and computational efficiency of both methods. 
Main conclusions of this study are summarized in Section 6.

2.  Problem Formulation
We assume that volumetric water content θ(x, t) and pressure head ψ(x, t), at any time t > 0 and point x = (x, z) ⊤ ∈ Ω 
within an agricultural plot Ω, can be predicted with the 2D Richards equation,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= ∇ ⋅ [𝐊𝐊(𝐱𝐱, 𝜓𝜓)∇(𝜓𝜓 − 𝑧𝑧)] − 𝑇𝑇 (𝐱𝐱, 𝑡𝑡𝑡𝑡𝑡 ), 𝐱𝐱 ∈ Ω, 𝑡𝑡 𝑡 0.� (1)

Here, x is the horizontal coordinate; z is the vertical coordinate indicating the distance from the soil surface 
(z  =  0) and being positive downward; and the soil domain Ω has depth Lz and width Lx, such that Ω  =  {x: 
0 < x < Lx, 0 < z < Lz}. To account for the soil's anisotropy and heterogeneity, we treat its unsaturated hydraulic 
conductivity K(x, ψ) as the second-rank tensor,

𝐊𝐊(𝐱𝐱, 𝜓𝜓) = 𝐊𝐊s(𝐱𝐱)𝐾𝐾r (𝜓𝜓) =

⎡
⎢
⎢
⎣

𝐾𝐾𝑥𝑥(𝐱𝐱) 0

0 𝐾𝐾𝑧𝑧(𝐱𝐱)

⎤
⎥
⎥
⎦
𝐾𝐾r (𝜓𝜓),� (2)

where Ks is the saturated hydraulic conductivity tensor with the horizontal and vertical components Kx and Kz, 
respectively; and Kr(ψ) is the relative hydraulic conductivity. The sink term, T(x, t, θ), in Equation 1 represents 
plant transpiration, aka root water uptake function.

The Richards equation is closed by specifying the three constitutive relations θ = θ(ψ), Kr = Kr(ψ), and T = T(θ). 
To be specific, we select the van Genuchten model (van Genuchten, 1980) for the first two,

𝐾𝐾r =

[
1 − 𝜓𝜓𝑚𝑚𝑚𝑚

d

(
1 + 𝜓𝜓𝑛𝑛

d

)−𝑚𝑚]2

(
1 + 𝜓𝜓𝑛𝑛

d

)𝑚𝑚∕2 ,
𝜃𝜃 − 𝜃𝜃i

𝜙𝜙 − 𝜃𝜃i
=
(
1 + 𝜓𝜓𝑛𝑛

d

)−𝑚𝑚
,� (3)

where ψd  =  αvG|ψ|, n  =  1/(1  −  m), θi is the irreducible water content; ϕ is the porosity; αvG and m are the 
shape (fitting) parameters. For the third relation, we use a canonical form (Perrochet, 1987; Vrugt, van Wijk, 
et al., 2001),

𝑇𝑇 (𝐱𝐱, 𝑡𝑡𝑡 𝑡𝑡) = 𝐹𝐹root(𝐱𝐱)𝐿𝐿𝑥𝑥𝑇𝑇max(𝑡𝑡)𝛾𝛾𝑇𝑇 (𝜃𝜃),� (4a)
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where Tmax(t) is the potential transpiration rate with units of length over time;

𝛾𝛾𝑇𝑇 (𝜃𝜃) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 0 ≤ 𝜃𝜃 𝜃 𝜃𝜃w

𝜃𝜃 − 𝜃𝜃w

𝜃𝜃∗ − 𝜃𝜃w
𝜃𝜃w < 𝜃𝜃 ≤ 𝜃𝜃∗

1 𝜃𝜃∗ < 𝜃𝜃 ≤ 𝜃𝜃p

� (4b)

is the root uptake water-stress response function (Guswa et al., 2002; Porporato et al., 2003) parameterized by the 
water content at the wilting point, θw, the water content at the point of stomatal closure, θ*, at which the uptake 
equals the demand, and by the field capacity θp; and

𝐹𝐹root(𝐱𝐱) =
root(𝐱𝐱)

∫
Ω
root(𝐱𝐱)d𝐱𝐱

� (4c)

is the normalized 2D root density function with units of one over length squared. For a single plant located at 
𝐴𝐴 𝐱𝐱p =

(
𝑥𝑥p, 0

)⊤ and having the maximum rooting length xm and depth zm, the 2D root density function 𝐴𝐴 root

(
𝐱𝐱; 𝐱𝐱p

)
 

is given by (Vrugt, Hopmans, et al., 2001)

root

(
𝐱𝐱; 𝐱𝐱p

)
=

[

1 −
min

(
|𝑥𝑥 − 𝑥𝑥p|, 𝑥𝑥m

)

𝑥𝑥m

][
1 −

min(𝑧𝑧𝑧 𝑧𝑧m)

𝑧𝑧m

]
e−𝑝𝑝𝑥𝑥|𝑥𝑥

∗−|𝑥𝑥−𝑥𝑥p‖∕𝑥𝑥m−𝑝𝑝𝑧𝑧|𝑧𝑧∗−𝑧𝑧|∕𝑧𝑧m ,� (4d)

where 𝐴𝐴 𝐱𝐱
∗ = (𝑥𝑥∗, 𝑧𝑧∗)

⊤ is the location of the maximum root water uptake, and px and pz are the shape factors (fitting 

parameters). For Np plants placed at locations 𝐴𝐴 𝐱𝐱p𝑖𝑖 =
(
𝑥𝑥p𝑖𝑖 , 0

)⊤ with i = 1, …, Np, we generalize the above expres-
sion to read

root(𝐱𝐱) =

𝑁𝑁p∑

𝑖𝑖=1

root

(
𝐱𝐱; 𝐱𝐱p𝑖𝑖

)
.� (4e)

While evaporation can occur over a finite soil depth, we follow the standard practice by restricting it to the soil 
surface. For an array of Nd drip emitters located at 𝐴𝐴 𝐱𝐱d𝑘𝑘 =

(
𝑥𝑥d𝑘𝑘 , 0

)⊤ with k = 1, …, Nd, this approximation gives 
rise to the boundary condition at z = 0,

𝐾𝐾𝑧𝑧𝐾𝐾r (𝜃𝜃)

(
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 1

)
= 𝑃𝑃 (𝑡𝑡)𝐿𝐿d

𝑁𝑁d∑

𝑘𝑘=1

𝛿𝛿
(
𝑥𝑥 − 𝑥𝑥d𝑘𝑘

)
− 𝐸𝐸(𝜃𝜃𝜃 𝜃𝜃), 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿𝑥𝑥, 𝑡𝑡 𝑡 0,� (5)

where P(t) is the flow rate of the drip emitter, with units of length per time; Ld is the characteristic length of the 
dripping device; δ(⋅) is the Dirac delta function; and the evaporation rate E(θ, t) is modeled, in analogy to Equa-
tion 4, as

𝐸𝐸(𝜃𝜃(𝐱𝐱, 𝑡𝑡), 𝑡𝑡) = 𝐸𝐸max(𝑡𝑡)𝛾𝛾𝐸𝐸(𝜃𝜃(𝐱𝐱, 𝑡𝑡)), for 𝐱𝐱 = (𝑥𝑥𝑥 0)
⊤
.� (6a)

Here, Emax is the maximum evaporation rate, and the evaporation reduction factor γE is given by (Hale & 
Orcutt, 1987)

𝛾𝛾𝐸𝐸(𝜃𝜃(𝑥𝑥𝑥 0, 𝑡𝑡)) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

0 0 ≤ 𝜃𝜃(𝑥𝑥𝑥 0, 𝑡𝑡) < 𝜃𝜃h

𝜃𝜃(𝑥𝑥𝑥 0, 𝑡𝑡) − 𝜃𝜃h

𝜃𝜃w − 𝜃𝜃h
𝜃𝜃h < 𝜃𝜃(𝑥𝑥𝑥 0, 𝑡𝑡) ≤ 𝜃𝜃w

1 𝜃𝜃w < 𝜃𝜃(𝑥𝑥𝑥 0, 𝑡𝑡) ≤ 𝜃𝜃p,

� (6b)

where θh is the hygroscopic saturation at which evaporation diminishes. At the bottom of the soil domain, z = Lz, 
we impose a free-drainage condition,

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 1 = 0, 0 ≤ 𝑥𝑥 ≤ 𝐿𝐿𝑥𝑥, 𝑧𝑧 = 𝐿𝐿𝑧𝑧, 𝑡𝑡 𝑡 0,� (7)
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The boundary conditions on the remaining segments of the computational domain are

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0, for 𝑥𝑥 = 0 and 𝐿𝐿𝑥𝑥, 0 < 𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧, 𝑡𝑡 𝑡 0.� (8)

Finally, we assume the initial water content in the soil domain, θ0, to be uniform, giving rise to the initial condition

𝜃𝜃(𝐱𝐱 ∈ Ω, 0) = 𝜃𝜃0.� (9)

In the flow model given by Equations 1–9, we assume the static soil properties (e.g., the saturated hydraulic 
conductivity Ks(x) and the van Genuchten parameters αvG and n) and the root density distribution 𝐴𝐴 root(𝐱𝐱) to be 
known with certainty (e.g., estimated in advance through infiltration tests). Our goal is to estimate the maximum 
evaporation rate Emax(t) and the potential transpiration rate Tmax(t) from soil-moisture data collected by a sensor 
network. These two functions in Equations 4a and 6a parameterize the ET rate (1/hr),

(𝐱𝐱, 𝑡𝑡) = 𝑇𝑇 (𝐱𝐱, 𝑡𝑡𝑡 𝑡𝑡(𝐱𝐱, 𝑡𝑡)) + 𝐸𝐸(𝐱𝐱, 𝑡𝑡𝑡 𝑡𝑡(𝐱𝐱, 𝑡𝑡))𝛿𝛿(𝑧𝑧), 𝑧𝑧 ≥ 0.� (10)

In numerical simulations, the soil domain Ω is discretized with a rectangular mesh consisting of Nrow rows and Ncol 
columns, for the total of Nel = Nrow × Ncol elements. The sides of each element are Δx and Δz in the x and z direc-
tions, respectively; discrete times τi = iΔt (i = 0, 1, 2, …) are separated by the time step Δt. We arrange the numer-
ical solution of Equations 1–9, θ(xl, τi) with l = 1, …, Nel and i = 0, 1, 2, …, in the form of a vector of length Nel:

𝜽𝜽(𝜏𝜏𝑖𝑖) =

(
𝜃𝜃(1,1), . . . , 𝜃𝜃(𝑁𝑁row ,1), . . . , 𝜃𝜃(1,𝑁𝑁col), . . . , 𝜃𝜃(𝑁𝑁row ,𝑁𝑁col)

)⊤

, 𝑖𝑖 = 0, 1, 2, . . . .�

This vector is random because Equations 1–9 involve the uncertain (random) coefficients Emax(t) and Tmax(t).

The soil-moisture sensor network comprises Nsen sensors placed at locations xl (l = 1, …, Nsen) throughout the soil 
domain Ω. With sampling frequency 1/Δtobs, the lth sensor takes Nobs measurements of the volumetric soil water 
content, 𝐴𝐴 𝐴𝐴𝑘𝑘

𝑙𝑙
 , at the observation times tk (k = 1, …, Nobs). The difference between the observation 𝐴𝐴 𝐴𝐴𝑘𝑘

𝑙𝑙
 and the true 

value of the water content, 𝐴𝐴 𝜃𝜃(𝐱𝐱𝑙𝑙 , 𝑡𝑡𝑘𝑘) , is due to a random measurement error 𝐴𝐴 𝐴𝐴𝑘𝑘
𝑙𝑙
 :

𝜃𝜃𝑘𝑘
𝑙𝑙
= 𝜃𝜃(𝐱𝐱𝑙𝑙 , 𝑡𝑡𝑘𝑘) + 𝜖𝜖𝑘𝑘

𝑙𝑙
, 𝑙𝑙 = 1, . . . , 𝑁𝑁sen, 𝑘𝑘 = 1, . . . , 𝑁𝑁obs.� (11)

At each measurement time, the observations in Equation  11 form the Nsen-dimensional data vector 
𝐴𝐴 𝐝𝐝

𝑘𝑘 =
{
𝜃𝜃𝑘𝑘
𝑙𝑙
∶ 𝑙𝑙 = 1, . . . , 𝑁𝑁sen

}
 , for k = 1, …, Nobs. We model the errors 𝐴𝐴 𝐴𝐴𝑘𝑘

𝑙𝑙
 as zero-mean (bias-free) Gaussian white 

noise, such that 𝐴𝐴 𝔼𝔼
{
𝜖𝜖𝑘𝑘
𝑙𝑙

}
= 0 and 𝐴𝐴 𝔼𝔼

{
𝜖𝜖𝑘𝑘
𝑙𝑙
𝜖𝜖
𝜇𝜇
𝜈𝜈

}
= 𝜎𝜎2𝛿𝛿𝑙𝑙𝑙𝑙𝛿𝛿𝑘𝑘𝑘𝑘 (l, ν = 1, …, Nsen and k, μ = 1, …, Nobs), where 𝐴𝐴 𝔼𝔼{⋅} denotes 

the ensemble average, σ 2 is the variance (strength) of the white noise, and δij is the Kronecker delta. Therefore, the 
data vector d k is characterized by the multivariate Gaussian probability density function (PDF)

𝑓𝑓𝐝𝐝(𝐝𝐝; 𝑡𝑡𝑘𝑘) =
1

(2𝜋𝜋)
𝑁𝑁el∕2|𝚺𝚺𝐝𝐝|1∕2

exp

[
−
1

2

(
𝐝𝐝 − 𝐝̄𝐝

𝑘𝑘
)⊤
𝚺𝚺

−1

𝐝𝐝

(
𝐝𝐝 − 𝐝̄𝐝

𝑘𝑘
)]

� (12)

with mean 𝐴𝐴 𝐝̄𝐝
𝑘𝑘 and covariance matrix Σd. The off-diagonal terms of the latter are all 0, and the diagonal terms are σ 2.

As mentioned earlier, the length Nel of the solution vector θ(τi) differs from the length Nsen of the data vector d k, 
and θ(τi) is computed at discrete times τi of which the observation times tk are a subset. To facilitate the compari-
son between the model prediction θ and the observations d, it is common to introduce the Nsen × Nel observational 
matrix 𝐴𝐴 𝐇𝐇

𝑘𝑘

obs
 . Thus, the operation 𝐴𝐴 𝐇𝐇

𝑘𝑘

obs
𝜽𝜽 extracts those elements of the Nel-dimensional solution vector θ ⋆ that 

match the locations (elements) and times of the Nsen-dimensional observation vector d k.

Since we have assumed Equations 1–9 to provide the error-free representation of reality, their solution θ(x, t) coin-
cides with the true water content 𝐴𝐴 𝜃𝜃(𝐱𝐱, 𝑡𝑡) as long as all the model parameters are known with certainty. This assump-
tion can be relaxed by adding the model error, typically a space-time white noise, to Equation 1; this noise would 
account for a possible discrepancy between θ(x, t) and 𝐴𝐴 𝜃𝜃(𝐱𝐱, 𝑡𝑡) due to the breakdown of the modeling assumptions.

3.  Alternative Strategies for ET Estimation
3.1.  Data-Driven Estimation of Total ET

The total ET rate (m/hr), Stot(t), is computed from its spatially distributed counterpart in Equation  10 via 
integration,
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𝑆𝑆tot(𝑡𝑡) =
1

𝐿𝐿𝑥𝑥 ∫
Ω

𝑇𝑇 (𝐱𝐱, 𝑡𝑡𝑡 𝑡𝑡(𝐱𝐱, 𝑡𝑡))d𝐱𝐱 +
1

𝐿𝐿𝑥𝑥 ∫

𝐿𝐿𝑥𝑥

0

𝐸𝐸(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  (𝑥𝑥𝑥 0, 𝑡𝑡))d𝑥𝑥𝑥� (13)

or via a numerical approximation of these integrals. To simplify the presentation, we suppose that the 
soil-moisture sensors are equally spaced. The soil-water balance approach (Breña Naranjo et al., 2011; Vrugt, 
van Wijk, et al., 2001; Wilson et al., 2001) for the estimation of the total ET 𝐴𝐴 𝐴𝐴𝑘𝑘

tot
= 𝑆𝑆tot(𝑡𝑡𝑘𝑘) at discrete observation 

times tk consists of the following two steps. First, the soil domain Ω is discretized with a uniform mesh, whose 
rectangular elements have lengths Δxobs and Δzobs in the x and z directions, respectively. The values of Δxobs and 
Δzobs are chosen such that each element contains a single sensor; in a typical simulation, Δz ≪ Δzobs, Δx ≪ Δxobs, 
and Δt ≪ Δtobs. Without loss of generality, we assume Δzobs, Δxobs, and Δtobs to be the integer multiples of their 
respective numerical-mesh counterparts. This observational mesh comprises Nsen elements, which are arranged 
in 𝐴𝐴 𝐴𝐴 row

sen
 rows and 𝐴𝐴 𝐴𝐴 col

sen
 columns, such that 𝐴𝐴 𝐴𝐴sen = 𝑁𝑁 row

sen
⋅𝑁𝑁 col

sen
 . Second, 𝐴𝐴 𝐴𝐴𝑘𝑘

tot
 is related to the prescribed flow rate 

P k = P(tk) of the dripping device and to the observed soil moisture �� =
{

��1 , . . . , �
�
�sen

}

 by water balance (Vrugt, 
van Wijk, et al., 2001),

𝑆𝑆𝑘𝑘
tot

=
𝑃𝑃 𝑘𝑘𝑁𝑁d𝐿𝐿d

𝐿𝐿𝑥𝑥

−

𝑁𝑁sen∑

𝑙𝑙=1

𝜃𝜃𝑘𝑘
𝑙𝑙
− 𝜃𝜃𝑘𝑘−1

𝑙𝑙

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

Δ𝑧𝑧obsΔ𝑥𝑥obs, 𝑘𝑘 = 1, . . . , 𝑁𝑁obs.� (14)

Since this strategy makes no use of the Richards equation, it is as good as the available data d k (in terms of both 
quantity and quality). Equally important, it provides no information about the spatial variability of ET.

DA enables one to augment this data-driven approach with model predictions. To this end, we replace the data 
d k in Equation 14 with the corresponding model predictions θ(xl, τk) obtained by Equations 1–9 with uncertain 
Emax(t) and Tmax(t),

𝑆𝑆𝑘𝑘
tot

=
𝑃𝑃 𝑘𝑘𝑁𝑁d𝐿𝐿d

𝐿𝐿𝑥𝑥

−

𝑁𝑁el∑

𝑙𝑙=1

𝜃𝜃(𝐱𝐱𝑙𝑙 , 𝑡𝑡𝑘𝑘) − 𝜃𝜃(𝐱𝐱𝑙𝑙 , 𝑡𝑡𝑘𝑘−1)

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

Δ𝑧𝑧Δ𝑥𝑥𝑥� (15)

The direct application of EnKF (Pan & Wood, 2006; Reichle et al., 2008) starts by updating the (mean and vari-
ance of) model predictions θ(xl, τk) on the data d k and then uses Equation 15 to compute 𝐴𝐴 𝐴𝐴𝑘𝑘

tot
 . The statistics of 

θ(xl, τk) are obtained by solving the flow problem in Equations 1–9 multiple times, for many realizations of the 
random inputs Emax(t) and Tmax(t). Consequently, this procedure can become prohibitively expensive, especially 
for high-dimensional problems.

3.2.  Model-Informed Observables for ET Estimation

To overcome these drawbacks, we extend the 1D strategy of Li et al. (2021) to higher spatial dimensions. This 
strategy treats ET rate, 𝐴𝐴 (𝐱𝐱, 𝑡𝑡) in Equation 10, as a state variable to be updated directly. In the discretized form, 
the soil surface (z = 0) in Equation 10 is represented by the first row of elements, and E ≡ 0 in the remaining 
(Nrow − 1) rows; thus, the discretized 𝐴𝐴 (𝐱𝐱, 𝑡𝑡) forms a vector of length Nel,

(𝜏𝜏𝑖𝑖) =

(
(1,1), . . . ,(𝑁𝑁row ,1), . . . ,(1,𝑁𝑁col), . . . ,(𝑁𝑁row ,𝑁𝑁col)

)⊤

.�

We denote by θ ⋆(xl, τi) a numerical solution of Equations 1–9 with E ≡ 0 and T ≡ 0 and the recursive initial condi-
tion. For i = 0, the initial condition is given by Equation 9 and the system is advanced Nk = Δtobs/Δt time steps until 
the first observation time, t1, is reached; after that, the posterior mean of θ(xl, t1), whose computation is detailed 
below, is used as the initial condition for the next Nk time steps of computing θ ⋆(xl, τi) for i = Nk + 1, …, 2Nk; etc. 
Since the uncertain E and T are the only source of randomness in the original flow problem, setting both of them 
to zero renders θ ⋆(xl, τi) deterministic. This solution is written in the vector form,

𝜽𝜽
⋆
(𝜏𝜏𝑖𝑖) =

(
𝜃𝜃⋆
(1,1)

, . . . , 𝜃𝜃⋆
(𝑁𝑁row ,1)

, . . . , 𝜃𝜃⋆
(1,𝑁𝑁col)

, . . . , 𝜃𝜃⋆
(𝑁𝑁⋆

row
,𝑁𝑁col)

)⊤

.�

Let us assume that the ET rate S(⋅, t) does not change during the time interval Δtobs between any two adjacent 
observation times tk−1 = (k − 1)Δtobs and tk = kΔtobs, for k = 1, …, Nobs. Then, the rate of change of the amount 
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of water in the lth element of the numerical mesh, xl (l = 1, …, Nel), during the kth observational time step, 
tk = kΔtobs (k = 1, …, Nobs), is

𝜃𝜃𝑙𝑙(𝑡𝑡𝑘𝑘) − 𝜃𝜃𝑙𝑙(𝑡𝑡𝑘𝑘−1)

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

Δ𝑧𝑧Δ𝑥𝑥 =
𝜃𝜃⋆
𝑙𝑙
(𝑡𝑡𝑘𝑘) − 𝜃𝜃𝑙𝑙(𝑡𝑡𝑘𝑘−1)

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

Δ𝑧𝑧Δ𝑥𝑥 −
𝑙𝑙(𝑡𝑡𝑘𝑘)Δ𝑧𝑧Δ𝑥𝑥

𝐿𝐿𝑥𝑥

,� (16)

where θl, 𝐴𝐴 𝐴𝐴⋆
𝑙𝑙
 and 𝐴𝐴 𝑙𝑙 refer to the lth component of the vectors θ, θ ⋆ and 𝐴𝐴  , respectively. Rearranging the terms and 

introducing 𝐴𝐴 𝐴𝐴𝑙𝑙(⋅) ≡ 𝑙𝑙(⋅)Δ𝑧𝑧Δ𝑥𝑥∕𝐿𝐿𝑥𝑥 yields, in the vector form,

𝐒𝐒(𝑡𝑡𝑘𝑘) =
𝜽𝜽
⋆
(𝑡𝑡𝑘𝑘) − 𝜽𝜽(𝑡𝑡𝑘𝑘)

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

Δ𝑧𝑧Δ𝑥𝑥𝑥 𝑥𝑥 = 1, . . . , 𝑁𝑁obs.� (17)

Sections 3.2.1 and 3.2.2 present two alternative DA strategies, EnKF and MLE supplemented with the Fisher 
information matrix, for the ET estimation from soil-moisture data. Both strategies provide a quantitative measure 
of uncertainty associated with this estimation.

3.2.1.  Ensemble Kalman Filter

A key novelty of our EnKF approach is to replace, in Equation 17, the expensive-to-compute random model 
predictions θ(tk) with the available data d k. Making use of the observation matrix Hobs, this substitution approx-
imates S(tk) with

𝐘𝐘
𝑘𝑘 =

𝐇𝐇
𝑘𝑘

obs
𝜽𝜽
⋆
− 𝐝𝐝

𝑘𝑘

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

Δ𝑧𝑧Δ𝑥𝑥𝑥 𝑥𝑥 = 1, . . . , 𝑁𝑁obs.� (18)

Since θ ⋆(⋅) is deterministic, Y k has the same PDF 𝐴𝐴 𝐴𝐴𝐘𝐘𝑘𝑘 (𝐲𝐲) as the soil-moisture data d k or, equivalently, the meas-
urement error ϵ(⋅). For the Gaussian white noise ϵ(⋅),

𝑓𝑓𝐘𝐘𝑘𝑘 (𝐲𝐲) =
1

(2𝜋𝜋)
𝑁𝑁el∕2|𝚺𝚺𝐘𝐘|1∕2

exp

[
−
1

2
(𝐲𝐲 − 𝝁𝝁

𝐘𝐘
)
⊤
𝚺𝚺

−1

𝐘𝐘
(𝐲𝐲 − 𝝁𝝁

𝐘𝐘
)

]
,� (19)

It follows from Equations 11, 17, and 18 that the mean, μY(tk), and covariance matrix, ΣY(tk), of this PDF are 
given by

𝝁𝝁
𝐘𝐘
(𝑡𝑡𝑘𝑘) = 𝐇𝐇

𝑘𝑘

obs
𝝁𝝁
𝐒𝐒

and 𝚺𝚺𝐘𝐘(𝑡𝑡𝑘𝑘) =

(
Δ𝑧𝑧Δ𝑥𝑥

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

)2

𝚺𝚺𝐝𝐝(𝑡𝑡𝑘𝑘).� (20)

Rather than assimilating the soil-moisture data d k, we assimilate their rescaled counterpart Y k.

The solution of Equations 1–9 with uncertain input parameters 𝐴𝐴 𝐴𝐴 𝑘𝑘
max

 and 𝐴𝐴 𝐴𝐴𝑘𝑘
max

 is a multivariate PDF fS(s; t). In 
Bayesian DA, this PDF is referred to as prior because it is not informed by the observations d k. Since 𝐴𝐴 𝐴𝐴 𝑘𝑘

max
 and 

𝐴𝐴 𝐴𝐴𝑘𝑘
max

 are constant during Δtobs = tk − tk−1 (k ≥ 1), we treat them as independent Gaussian variables whose PDFs

𝑓𝑓𝑚𝑚(𝜉𝜉𝑚𝑚) =
1

√
2𝜋𝜋𝜋𝜋𝑚𝑚

exp

[
−
(𝜉𝜉𝑚𝑚 − 𝜇𝜇𝑚𝑚)

2

2𝜎𝜎2
𝑚𝑚

]
, 𝑚𝑚 = 𝑇𝑇max, 𝐸𝐸max� (21)

have respective means 𝐴𝐴 𝐴𝐴𝑇𝑇max
 and 𝐴𝐴 𝐴𝐴𝐸𝐸max

 and standard deviations 𝐴𝐴 𝐴𝐴𝑇𝑇max
 and 𝐴𝐴 𝐴𝐴𝐸𝐸max

 . The nonlinearity of Equations 1–9 
suggests that the model output, fS(s; t), is not guaranteed to be Gaussian, even though the model inputs are (Lu 
et al., 2002; Tartakovsky, Guadagnini, et al., 2003; Tartakovsky, Lu, et al., 2003; among others). Nevertheless, 
EnKF assumes the prior fS(s; tk) at observation times tk to be multivariate Gaussian,

𝑓𝑓𝐒𝐒(𝐬𝐬; 𝑡𝑡𝑘𝑘) =
1

(2𝜋𝜋)
𝑁𝑁el∕2|𝚺𝚺𝐒𝐒|1∕2

exp

[
−
1

2

(
𝐬𝐬 − 𝝁𝝁

𝐒𝐒

)⊤
𝚺𝚺

−1

𝐒𝐒

(
𝐬𝐬 − 𝝁𝝁

𝐒𝐒

)]
.� (22)

The mean μS(tk) (a vector of length Nel) and covariance ΣS(tk) (an Nel × Nel matrix) are approximated by their 
sample-based counterparts computed as follows. First, Nsam samples (realizations) of Tmax and Emax are drawn 
from the Gaussian PDFs in Equation 21. Second, for each of these realizations, solutions of the flow Equa-
tions 1–9, θ ⋆ and θ, are used in Equation 17 to compute realizations of S. Finally, the resulting Nsam samples of S 
are processed to evaluate the sample mean μS and the sample covariance matrix ΣS.
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The prior PDF fS(s; tk) is updated on observed values y k of the random data Y k by means of the Bayes rule,

𝑓𝑓𝐒𝐒|𝐘𝐘𝑘𝑘=𝐲𝐲𝑘𝑘 (𝐬𝐬; 𝑡𝑡𝑘𝑘) ∼ 𝑓𝑓𝐘𝐘𝑘𝑘|𝐒𝐒=𝐬𝐬
(
𝐬𝐬; 𝐲𝐲𝑘𝑘; 𝑡𝑡𝑘𝑘

)
𝑓𝑓𝐒𝐒(𝐬𝐬; 𝑡𝑡𝑘𝑘),� (23)

to obtain the posterior PDF 𝐴𝐴 𝐴𝐴𝐒𝐒|𝐘𝐘𝑘𝑘=𝐲𝐲𝑘𝑘 (𝐬𝐬; 𝑡𝑡𝑘𝑘) ; it is the PDF of S conditioned on the random data Y k taking the 
observed values y k. The likelihood function

𝑓𝑓𝐘𝐘𝑘𝑘|𝐒𝐒=𝐬𝐬(𝐬𝐬; ⋅) =
1

(2𝜋𝜋)
𝑁𝑁el∕2|𝚺𝚺𝐘𝐘|1∕2

exp

[
−
1

2

(
𝐲𝐲
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝐬𝐬
)⊤
𝚺𝚺

−1

𝐘𝐘

(
𝐲𝐲
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝐬𝐬
)]
,� (24)

is constructed by treating as function of s the PDF of the data Y k conditioned on the model predicting the value 
s of the state variable S. This conditional Gaussian PDF, 𝐴𝐴 𝐴𝐴𝐘𝐘𝑘𝑘|𝐒𝐒=𝐬𝐬(𝐲𝐲; 𝐬𝐬; 𝑡𝑡𝑘𝑘) , corresponds to the data model 𝐴𝐴 𝐴𝐴𝐘𝐘𝑘𝑘 (𝐲𝐲) 
in Equation 19, wherein the model prediction s replaces the mean of the data, 𝐴𝐴 𝐝̄𝐝

𝑘𝑘 . According to Equation 23, this 
choice of the Gaussian prior (Equation 22) and the Gaussian likelihood function (Equation 24) translates into the 
Gaussian posterior,

𝑓𝑓𝐒𝐒|𝐘𝐘(𝐬𝐬; 𝑡𝑡𝑘𝑘) =
1

(2𝜋𝜋)
𝑁𝑁obs∕2|𝚺̂𝚺𝐒𝐒|1∕2

exp

[
−
1

2

(
𝐬𝐬 − 𝝁̂𝝁

𝐒𝐒

)⊤
𝚺̂𝚺

−1

𝐒𝐒

(
𝐬𝐬 − 𝝁̂𝝁

𝐒𝐒

)]
,� (25)

whose posterior mean, 𝐴𝐴 𝝁̂𝝁
𝐒𝐒
(𝑡𝑡𝑘𝑘) , and covariance, 𝐴𝐴 𝚺̂𝚺𝐒𝐒(𝑡𝑡𝑘𝑘) , are given by

𝝁̂𝝁
𝐒𝐒
= 𝝁𝝁

𝐒𝐒
+𝐊𝐊

(
𝐲𝐲
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝝁𝝁
𝐒𝐒

)
, 𝚺̂𝚺𝐒𝐒 =

(
𝐈𝐈 −𝐊𝐊𝐊𝐊

𝑘𝑘

obs

)
𝚺𝚺𝐒𝐒.� (26)

In this Kalman update, I denotes the Nel × Nel identity matrix, and the Nel × Nsen matrix

𝐊𝐊 = 𝚺𝚺𝐒𝐒𝐇𝐇
𝑘𝑘⊤

obs

(
𝐇𝐇

𝑘𝑘

obs
𝚺𝚺𝐒𝐒𝐇𝐇

𝑘𝑘⊤

obs
+ 𝚺𝚺𝐘𝐘

)−1

� (27)

is referred to as the Kalman gain.

Algorithm 1 summarizes the EnKF strategy described above. General considerations allow one to expect this 
algorithm to significantly outperform the previous versions of EnKF used to estimate ET from soil-moisture data 
(Li et al., 2021; Pan & Wood, 2006; Reichle et al., 2008) in terms of either accuracy or efficiency or both. Unlike 
these one-dimensional methods, Algorithm 1 accounts for the horizontal component of the water flux, which is 
likely to be pronounced in heterogeneous soils subjected to drip irrigation. Algorithm 1 is significantly faster than 
the EnKF implementations of Pan and Wood (2006) and Reichle et al. (2008), which find it necessary to solve the 
nonlinear flow problem (Equations 1–9) Nsam times, for each ensemble member.

Algorithm 1.  ET Estimation via EnKF

For k = 1, …, Nobs:
  1. Read flow rate P(tk)
  2. Solve Equations 1–9 with E ≡ 0 and T ≡ 0 to obtain θ ⋆(tk); the initial 
condition in Equation 9 is given by θ0 for k = 1 and θ(tk−1) for k ≥ 2
  3. Post-process soil moisture data d k to compute y k via Equation 18
  4. For the lth sample (l = 1, …, Nsam):
 (a) Draw realizations of 𝐴𝐴 𝐴𝐴 𝑘𝑘

max
 and 𝐴𝐴 𝐴𝐴𝑘𝑘

max
 from their respective PDFs in Equation 21

  (b) Use these values in Equations  4–6 to compute T(⋅, t1) and E(⋅, t1); 
functionals γT(θ(x, t)) and γE(θ(x, 0, t)) are evaluated at θ0 for k = 1 and 
θ(tk−1) for k ≥ 2
 (c) Use Equation 10 to compute the ET rate S(x, tk)
  5. Compute the prior mean μS(tk) and covariance ΣS(tk) of S(tk) in Equation 22
  6. Compute the posterior mean 𝐴𝐴 𝝁̂𝝁

𝐒𝐒
(𝑡𝑡𝑘𝑘) and covariance 𝐴𝐴 𝚺̂𝚺𝐒𝐒(𝑡𝑡𝑘𝑘) of S(tk) in Equa-

tions 26 and 27
  7. Solve Equations 1–9 with 𝐴𝐴 𝐒𝐒 = 𝝁̂𝝁

𝐒𝐒
(𝑡𝑡𝑘𝑘) to forecast θ(tk)
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Algorithm 1 shares the shortcomings of other EnKF implementations. To accelerate the full Bayesian update 
(Boso & Tartakovsky, 2020), the EnKF replaces the probabilistic solution of Equations 1–9 with its multivariate 
Gaussian counterpart (Equation 22); this foundational step introduces an uncontrollable approximation (Bocquet 
et al., 2015), whose accuracy has to be verified via numerical experimentation (see Section 4 below). Moreover, 
the EnKF requires one to specify a reasonable prior for the uncertain parameters, for example, the means and 
variances of Tmax and Emax in Equation 21. For the situations when this information is unavailable, we propose an 
MLE-based alternative.

3.2.2.  Maximum Likelihood Estimator With Fisher Information

MLE is a deterministic technique that ignores (random) measurement errors (𝐴𝐴 𝐴𝐴𝑘𝑘𝑛𝑛 ≡ 0 in Equation 11). At any 
observation time tk, the loss function

̃
𝑘𝑘 =

1

2𝑁𝑁sen

𝐀̃𝐀
⊤
𝐀̃𝐀� (28a)

provides a measure of mismatch between the observed, d k, and predicted, θ(tk), water content. Here, 
𝐴𝐴 𝐀̃𝐀 = 𝐝𝐝

𝑘𝑘 −𝐇𝐇
𝑘𝑘

obs
𝜽𝜽
(
𝑡𝑡𝑘𝑘; 𝑇𝑇

𝑘𝑘
max

, 𝐸𝐸𝑘𝑘
max

)
 , and the notation 𝐴𝐴 𝜽𝜽

(
⋅; 𝑇𝑇 𝑘𝑘

max
, 𝐸𝐸𝑘𝑘

max

)
 makes explicit the dependence of the model 

prediction on uncertain Tmax(t) and Emax(t). Making use of the solution θ ⋆(t) introduced above, we rewrite 𝐴𝐴 𝐀̃𝐀 as

𝐀̃𝐀 = 𝐇𝐇
𝑘𝑘

obs

[
𝜽𝜽
⋆
(𝑡𝑡𝑘𝑘) − 𝜽𝜽

(
𝑡𝑡𝑘𝑘; 𝑇𝑇

𝑘𝑘
max, 𝐸𝐸

𝑘𝑘
max

)]
−
(
𝐇𝐇

𝑘𝑘

obs
𝜽𝜽
⋆
(𝑡𝑡𝑘𝑘) − 𝐝𝐝

𝑘𝑘
)
.� (28b)

Accounting for Equation 17,


𝑘𝑘 =

1

2𝑁𝑁sen

𝐀𝐀
⊤
𝐀𝐀, 𝐀𝐀 = 𝐇𝐇

𝑘𝑘

obs
𝐒𝐒(𝑡𝑡𝑘𝑘) −

Δ𝑧𝑧Δ𝑥𝑥

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥

(
𝐇𝐇

𝑘𝑘

obs
𝜽𝜽
⋆
(𝑡𝑡𝑘𝑘) − 𝐝𝐝

𝑘𝑘
)
,� (29)

where 𝐴𝐴 𝑘𝑘 = ̃𝑘𝑘(Δ𝑧𝑧Δ𝑥𝑥)
2
∕(Δ𝑡𝑡obs𝐿𝐿𝑥𝑥)

2 . The values of 𝐴𝐴 𝐴𝐴 𝑘𝑘
max

 and 𝐴𝐴 𝐴𝐴𝑘𝑘
max

 that minimize 𝐴𝐴 𝑘𝑘 are referred to as their MLEs.

This minimization problem is solved by gradient descent with the components of the gradient computed analyti-
cally. For the ET model in Equations 4–6, these components are

𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕 𝑘𝑘
max

=
[
𝐝𝐝
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝜽𝜽
(
𝑡𝑡𝑘𝑘; 𝑇𝑇

𝑘𝑘
max, 𝐸𝐸

𝑘𝑘
max

)]⊤
𝐇𝐇

𝑘𝑘

obs
(𝜸𝜸𝑇𝑇 ◦𝐅𝐅root),� (30a)

𝜕𝜕𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘
max

=
[
𝐇𝐇

𝑘𝑘
top

(
𝐝𝐝
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝜽𝜽
(
𝑡𝑡𝑘𝑘; 𝑇𝑇

𝑘𝑘
max, 𝐸𝐸

𝑘𝑘
max

))]⊤
𝐇𝐇

𝑘𝑘
top𝐇𝐇

𝑘𝑘

obs
𝜸𝜸𝐸𝐸,� (30b)

where

𝐅𝐅root = (𝐹𝐹root(𝑥𝑥1, 𝑧𝑧1), . . . , 𝐹𝐹root(𝑥𝑥row, 𝑧𝑧1), . . . , 𝐹𝐹root(𝑥𝑥1, 𝑧𝑧col), . . . , 𝐹𝐹root(𝑥𝑥row, 𝑧𝑧col))
⊤
,

𝜸𝜸𝑇𝑇 =

(
𝛾𝛾𝑇𝑇

(
𝜃𝜃(𝑥𝑥1 ,𝑧𝑧1)

)
, . . . , 𝛾𝛾𝑇𝑇

(
𝜃𝜃(𝑥𝑥row ,𝑧𝑧1)

)
, . . . , 𝛾𝛾𝑇𝑇

(
𝜃𝜃(𝑥𝑥1 ,𝑧𝑧col)

)
, . . . , 𝛾𝛾𝑇𝑇

(
𝜃𝜃(𝑥𝑥row ,𝑧𝑧col)

))⊤

,

𝜸𝜸𝐸𝐸 =

(
𝛾𝛾𝐸𝐸

(
𝜃𝜃(𝑥𝑥1 ,𝑧𝑧1)

)
, . . . , 𝛾𝛾𝐸𝐸

(
𝜃𝜃(𝑥𝑥row ,𝑧𝑧1)

)
, . . . , 𝛾𝛾𝐸𝐸

(
𝜃𝜃(𝑥𝑥1 ,𝑧𝑧col)

)
, . . . , 𝛾𝛾𝑇𝑇

(
𝜃𝜃(𝑥𝑥row ,𝑧𝑧col)

))⊤

,

�

an Ntop × Nsen matrix 𝐴𝐴 𝐇𝐇
𝑘𝑘
top extracts the soil water content measured at the soil surface from the data array d k, Ntop 

is the number of sensors placed at the top soil layer, and the symbol ◦ denotes the element-wise multiplication. 
The MLE procedure described above is summarized in Algorithm 2.

For a prescribed tolerance ϵ, Algorithm 2 has converged when

|||||


𝑘𝑘

(𝜈𝜈)
− 

𝑘𝑘

(𝜈𝜈−1)


𝑘𝑘

(𝜈𝜈−1)

|||||
≤ 𝜖𝜖𝜖 𝜖𝜖 = 1, 2, . . .� (31)

between two successive iterations (ν  −  1 and ν). A suitable choice of the learning rates αT and αE acceler-
ates the convergence without overshooting the minimum. We use exponentially decaying learning rates, 
αT = 20,000 ⋅ (0.9) ν−1 and αE = 0.05 ⋅ (0.8) ν−1, and set ϵ = 10 −4.

Algorithm 2 yields deterministic estimates of Tmax and Emax. We use the Fisher information matrix 𝐴𝐴  quantify 
the uncertainty inherent in these estimators. We reintroduce the measurement noise into our deterministic MLE 
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algorithm. Since the noise has zero mean and is Gaussian, and since MLE treats the deterministic flow model 
(Equations 1–9) as the perfect representation of reality, the ensemble mean of d k coincides with the model predic-
tion at the corresponding locations, 𝐴𝐴 𝔼𝔼

{
𝐝𝐝
𝑘𝑘
}
= 𝐇𝐇

𝑘𝑘

obs
𝜽𝜽(𝑡𝑡𝑘𝑘) , and the PDF of d k conditioned on the model solution 

being θ(tk) is multivariate Gaussian. The natural logarithm of this conditional PDF is

ln 𝑓𝑓𝐝𝐝|𝜽𝜽 = 𝐶𝐶 −
1

2

(
𝐝𝐝
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝜽𝜽(𝑡𝑡𝑘𝑘)

)⊤
𝚺𝚺

−1

𝐝𝐝

(
𝐝𝐝
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝜽𝜽(𝑡𝑡𝑘𝑘)

)
,� (32)

where C is the normalizing constant. In analogy with Equation 29, we rewrite this as

ln 𝑓𝑓𝐝𝐝|𝜽𝜽 = 𝐶𝐶 −
1

2
𝐀𝐀

⊤
𝚺𝚺

−1

𝐘𝐘
𝐀𝐀.� (33)

The Hessian matrix

 =

⎡
⎢
⎢
⎢
⎣

𝜕𝜕2ln 𝑓𝑓𝐝𝐝|𝜽𝜽

𝜕𝜕𝜕𝜕 2
max

𝜕𝜕2ln 𝑓𝑓𝐝𝐝|𝜽𝜽

𝜕𝜕𝜕𝜕max𝜕𝜕𝜕𝜕max

𝜕𝜕2ln 𝑓𝑓𝐝𝐝|𝜽𝜽

𝜕𝜕𝜕𝜕max𝜕𝜕𝜕𝜕max

𝜕𝜕2ln 𝑓𝑓𝐝𝐝|𝜽𝜽

𝜕𝜕𝜕𝜕2
max

⎤
⎥
⎥
⎥
⎦

� (34a)

is computed analytically, such that

11 = −(Δ𝑥𝑥Δ𝑧𝑧)
2
[
𝐇𝐇

𝑘𝑘

obs
(𝜸𝜸𝑇𝑇 ◦𝐅𝐅root)

]⊤
𝚺𝚺

−1

𝐘𝐘

[
𝐇𝐇

𝑘𝑘

obs
(𝜸𝜸𝑇𝑇 ◦𝐅𝐅root)

]
� (34b)

12 = −(Δ𝑥𝑥)
2
Δ𝑧𝑧∕𝐿𝐿𝑥𝑥

[
𝐇𝐇

𝑘𝑘

obs
(𝜸𝜸𝑇𝑇 ◦𝐅𝐅root)

]⊤
𝚺𝚺

−1

𝐘𝐘

[
𝐇𝐇

𝑘𝑘
top𝐇𝐇

𝑘𝑘

obs
𝜸𝜸𝐸𝐸

]
� (34c)

21 = −(Δ𝑥𝑥)
2
Δ𝑧𝑧∕𝐿𝐿𝑥𝑥

[
𝐇𝐇

𝑘𝑘
top𝐇𝐇

𝑘𝑘

obs
𝜸𝜸𝐸𝐸

]⊤
𝚺𝚺

−1

𝐘𝐘

[
𝐇𝐇

𝑘𝑘

obs
(𝜸𝜸𝑇𝑇 ◦𝐅𝐅root)

]
� (34d)

22 = −(Δ𝑥𝑥∕𝐿𝐿𝑥𝑥)
2
[
𝐇𝐇

𝑘𝑘
top𝐇𝐇

𝑘𝑘

obs
𝜸𝜸𝐸𝐸

]⊤
𝚺𝚺

−1

𝐘𝐘

[
𝐇𝐇

𝑘𝑘
top𝐇𝐇

𝑘𝑘

obs
𝜸𝜸𝐸𝐸

]
.� (34e)

Algorithm 2.  ET Estimation via MLE

For k = 1, …, Nobs:
  1. Read flow rate P(tk)
  2. Set 𝐴𝐴 𝐴𝐴

𝑘𝑘𝑘(𝜈𝜈=0)
max

= 0 and 𝐴𝐴 𝐴𝐴
𝑘𝑘𝑘(𝜈𝜈=0)
max

= 0

 For ν = 1, 2, … (until convergence):
 (a) Compute T(x, tk) and E(θ(x, 0), tk) via Equations 4–6
 (b) Compute θ(tk) by solving Equations 1–9; the initial condition in Equa-
tion 9 is given by θ0 for k = 1 and θ(tk−1) for k ≥ 2
 (c) Compute 𝐴𝐴 𝐜𝐜

𝑘𝑘 = 𝐝𝐝
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝜽𝜽
(
𝑡𝑡𝑘𝑘; 𝑇𝑇

𝑘𝑘𝑘(𝜈𝜈)
max

, 𝐸𝐸
𝑘𝑘𝑘(𝜈𝜈)
max

)

 (d) For prescribed learning rates αT and αE, update Emax according to

𝐴𝐴 𝐴𝐴
𝑘𝑘𝑘(𝜈𝜈)
max = 𝐸𝐸

𝑘𝑘𝑘(𝜈𝜈−1)
max −

𝛼𝛼𝐸𝐸Δ𝑧𝑧Δ𝑥𝑥2

Δ𝑡𝑡obs𝐿𝐿
2
𝑥𝑥𝑁𝑁sen

(
𝐇𝐇

𝑘𝑘
top𝐜𝐜

𝑘𝑘
)⊤
𝐇𝐇

𝑘𝑘
top𝐇𝐇

𝑘𝑘

obs
𝜸𝜸𝐸𝐸 

 (e) Compute E(θ(x, 0), tk) via Equation 6
 (f) Compute θ(tk) by solving Equations 1–9 with the updated Emax; the initial 
condition in Equation 9 is given by θ0 for k = 1 and θ(tk−1) for k ≥ 2
 (g) Recompute 𝐴𝐴 𝐜𝐜

𝑘𝑘 = 𝐝𝐝
𝑘𝑘 −𝐇𝐇

𝑘𝑘

obs
𝜽𝜽
(
𝑡𝑡𝑘𝑘; 𝑇𝑇

𝑘𝑘𝑘(𝜈𝜈)
max

, 𝐸𝐸
𝑘𝑘𝑘(𝜈𝜈)
max

)

 (h) Update Tmax according to

𝐴𝐴 𝐴𝐴
𝑘𝑘𝑘(𝜈𝜈)
max

= 𝑇𝑇
𝑘𝑘𝑘(𝜈𝜈−1)
max

−
𝛼𝛼𝑇𝑇 (Δ𝑧𝑧Δ𝑥𝑥)

2

Δ𝑡𝑡obs𝐿𝐿𝑥𝑥𝑁𝑁sen

(
𝐜𝐜
𝑘𝑘
)⊤
𝐇𝐇

𝑘𝑘

obs
(𝜸𝜸𝑇𝑇 ◦𝐅𝐅root) 

 (i) Compute T(x, tk) via Equation 4 using the updated Tmax
 (j) Compute θ(tk) by solving Equations 1–9 with the updated E(θ(x, 0), tk) 
and      T(x, tk); the initial condition in Equation 9 is given by θ0 for k = 1 
and θ(tk−1)     for k ≥ 2
  (k) Compute the loss function 𝐴𝐴 

𝑘𝑘

(𝜈𝜈)
 via Equation 29
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If one treats Tmax and Emax as random variables, then the ensemble mean of 𝐴𝐴  is the information matrix (Lehmann 
& Casella, 1998),

 = −𝔼𝔼[].� (35)

Its inverse is the variance-covariance matrix of MLEs of Tmax and Emax (Efron & Hinkley, 1978),


−1

=

⎡
⎢
⎢
⎣

var(𝑇𝑇max) cov(𝑇𝑇max, 𝐸𝐸max)

cov(𝐸𝐸max, 𝑇𝑇max) var(𝐸𝐸max)

⎤
⎥
⎥
⎦
.� (36)

4.  Synthetic Experiments
We consider rows of plants, whose irrigation is such that the soil moisture is spatially uniform in the directions 
of the rows. The resulting two-dimensional flow domain is 10 m in width (the x coordinate) and 1.5 m in depth 
(the z coordinate). The plants and dripping devices are located at x = 1, 3, 5, 7, and 9 m. A normalized root 
density, Froot(x), is shown in Figure 1, accompanied by a map of saturated hydraulic conductivity Ks(x); Table 1 
contains values of the remaining hydraulic properties of the soil and parameters of the root density function in 
Equations 1–9. Dripping irrigation occurs at 24, 74, 124, and 174 hr; each watering cycle lasts for 4 hr; and each 
irrigation device has length Ld = 0.05 m and operates with flow rate P(t) = 0.8 m/hr.

The heterogeneous Ks(x) in Figure 1 is a realization from a log-normal distribution with mean −3.58 and variance 
0.89 (Wang & Tartakovsky, 2011) and correlation length 1 m. The ground-truth values of water content 𝐴𝐴 𝜽̃𝜽(𝑡𝑡) , ET 

𝐴𝐴 𝐒̃𝐒(𝑡𝑡) , and the total ET rate 𝐴𝐴 𝑆̃𝑆tot(𝑡𝑡) in Figure 4a are generated by solving Equations 1–9 for given time series Tmax(t) 
and Emax = 4.17 × 10 −4 m/hr. The numerical solution was obtained with the 𝐴𝐴 PFLOTRAN code, for the flow 

Figure 1.  Isotropic saturated hydraulic conductivity Ks(x) (Left) and the normalized root density Froot(x) (Right).

Table 1 
Hydraulic Soil Properties, Root Water Uptake Parameters and Initial Guesses for the Statistics of Unknown Tmax and Emax

Parameter Symbol Value Units

Porosity ϕ 0.4 –

Irreducible water content θi 0.05 –

Field capacity θp 0.4 –

Shape factor in van Genuchten model αvG 1 ⋅ 10 −3 –

Shape factor in van Genuchten model mvG 0.5 –

Saturation at the wilting point θw 0.1 –

Saturation at the point of stomatal closure θ* 0.2 –

Hygroscopic saturation θh 0.05 –

Initial soil moisture content θ0 0.1483 –

Maximum rooting depth in the z direction zm 1 m

Horizontal location of maximum root water uptake xm 1 m

Prior mean of Tmax 𝐴𝐴 𝐴𝐴𝑇𝑇max
  2 ⋅ 10 −3 m/hr

Prior std of Tmax 𝐴𝐴 𝐴𝐴𝑇𝑇max
  1 ⋅ 10 −3 m/hr

Prior mean of Emax 𝐴𝐴 𝐴𝐴𝐸𝐸max
  4.17 ⋅ 10 −4 m/hr

Prior std of Emax 𝐴𝐴 𝐴𝐴𝐸𝐸max
  2 ⋅ 10 −4 m/hr
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domain discretized into Nel = 30 × 200 square elements of size Δx = Δz = 0.05 m, and the simulated time horizon 
of 200 hr discretized with time steps Δt = 0.02 hr.

Figure 2 shows temporal snapshots of the ground-truth maps 𝐴𝐴 𝜽̃𝜽(𝑡𝑡𝑘𝑘) . At t = 28 and 78 hr, soil saturation in the 
drippers' vicinity increases dramatically after water application; subsequent water redistribution gradually takes 
place throughout the soil. At the end of simulation time, t = 200 hr, water content 𝐴𝐴 𝜃𝜃(𝐱𝐱, ⋅) exhibits considerable 
spatial variability in the horizontal direction, reflecting soil heterogeneity. Although not shown here, and as to be 
expected, we found ET 𝐴𝐴 𝑆̃𝑆(𝐱𝐱, 𝑡𝑡) to be largest close to the soil surface due to evaporation and relatively large root 
density. Different patters of 𝐴𝐴 𝑆̃𝑆(𝐱𝐱, ⋅) for different plants reflect the non-uniformity of 𝐴𝐴 𝜃𝜃(𝐱𝐱, ⋅) through the water-stress 
response functions γT(θ) and γE(θ).

A network of Nsen = 10 × 6 soil-moisture sensors collects measurements over the time interval of 200 hr with 
time step Δtobs = 2 hr. The spatial coordinates (in cm) of these sensors are (xn, zm), with xn = 100(n − 1) + 2.5 
for n = 1, …, 10 and {z1, …, z6} = {2.5, 7.5, 12.5, 17.5, 32.5, 97.5}. The measurements �� =

{

��1 , . . . , ���sen

}

 at 
observation times tk (k = 1, …, Nobs = 100) are generated, in accordance with the data model in Equation 11, by 
adding zero-mean white noise ϵ (with σϵ = 0.001) to the ground-truth prediction of water content, 𝐴𝐴 𝜃𝜃 , in Figure 2.

5.  Results
We deploy our EnKF and MLE algorithms to infer ET S(x, t) and total ET rate Stot(t) from the soil-moisture 
data generated in the previous section. (EnKF comprised 200 ensemble members and used the prior statistics of 
parameters Tmax(t) and Emax(t) from Table 1.) Figure 3 exhibits temporal snapshots of the spatial maps of S(x, t) 
estimated via EnKF. Since their counterparts obtained via MLE are visually similar, we do not show them here; 
instead, Figure 3 also provides the RMSE 𝐴𝐴 (𝑡𝑡) and the total RMSE 𝐴𝐴 tot ,

(𝑡𝑡𝑘𝑘) =

√√√√ 1

𝑁𝑁el

𝑁𝑁el∑

𝑖𝑖=1

(
̃

𝑘𝑘
𝑖𝑖
− 

𝑘𝑘
𝑖𝑖

)2
, tot =

√√√√ 1

𝑁𝑁obs

𝑁𝑁obs∑

𝑘𝑘=1

(𝑡𝑡𝑘𝑘),  = 𝑆𝑆 or 𝜃𝜃𝜃� (37)

for the two algorithms. Here, 𝐴𝐴 ̃
𝑘𝑘
𝑖𝑖
= ̃(𝐱𝐱𝑖𝑖, 𝑡𝑡𝑘𝑘) and 𝐴𝐴 

𝑘𝑘
𝑖𝑖
= (𝐱𝐱𝑖𝑖, 𝑡𝑡𝑘𝑘) are the true and estimated values of the quantity 

𝐴𝐴  , which stands for either ET S or water content θ. By these metrics, the EnKF and MLE predictions of ET, S(x, 
t), are equally accurate, with EnKF having a slight edge.

Figure 4 shows predictions of the total ET rate, Stot(t), obtained via EnKF and MLE. The initial guess about Stot(t) 
is, by design, significantly off the mark; not only the true values of the total ET, 𝐴𝐴 𝑆̃𝑆tot(𝑡𝑡) , differ from their prior 
estimates, they also lie outside the confidence interval, which is made wide to reflect the significant uncertainty 

Figure 2.  Temporal snapshots of the ground-truth spatial distribution of water content, 𝐴𝐴 𝜃𝜃(𝐱𝐱, 𝑡𝑡) , obtained as a numerical 
solution of Equations 1–9 with known input parameters.
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in the absence of data. Both EnKF and MLE yield accurate estimates Stot(t), with MLE significantly underestimat-
ing the predictive uncertainty: the true values, 𝐴𝐴 𝑆̃𝑆tot(𝑡𝑡) , often fall outside the confidence interval resulting from the 
Fisher information. A more quantitative assessment of the relative accuracy of the EnKF and MLE predictions of 
Stot(t) is provided by the relative bias b, the correlation coefficient R, and the relative measure RV,

𝑏𝑏 =
⟨𝑆𝑆tot⟩ − ⟨𝑆̃𝑆tot⟩

⟨𝑆̃𝑆tot⟩
, 𝑅𝑅 =

cov

(
𝑆𝑆tot, 𝑆̃𝑆tot

)

𝜎𝜎𝑆𝑆tot
𝜎𝜎𝑆̃𝑆tot

, 𝑅𝑅𝑅𝑅 =
𝜎𝜎𝑆𝑆tot

𝜎𝜎𝑆̃𝑆tot

,� (38)

where 〈⋅〉, cov(⋅, ⋅), and σ indicate the mean, covariance, and standard deviation, respectively. By all these metrics, 
whose values are reported in Figure 4, EnKF slightly outperforms MLE (recall that an accurate estimate corre-
sponds to b close to 0, and to R and RV close to 1).

Figure 5 shows the EnKF-based predictions of the spatiotemporal evolution of water content, θ(x, t). In lieu of the 
MLE predictors, which are visually similar to those obtained via EnKF, this figure displays the RMSEs for the 
two methods. Both DA strategies accurately capture the water-redistribution dynamics in the heterogeneous soil, 
having RMSEs on the order of 10 −3. At later times, the RMSE of the MLE-based predictions is slightly smaller 
than that of its EnKF-based counterpart. The total error of both methods, 𝐴𝐴 tot , is on the order of 10 −4, indicating 
their ability to accurately predict the water content θ(x, t) at unsampled locations.

Finally, we investigate the computational efficiency of our EnKF and MLE algorithms, both relative to each 
other and in comparison with the standard EnKF that updates water content, EnKF(θ). The computational cost 
of the MLE algorithm is largely controlled by the cost of an iterative solution of the minimization problem in 

Figure 3.  Temporal snapshots of evapotranspiration, S(x, t), estimated with ensemble Kalman filter (EnKF). The bottom 
graph shows the root mean square errors, 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 tot , for the S(x, t) estimates obtained, alternatively, via EnKF and 
maximum likelihood estimation.
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Figure 4.  (a) Prior information (guess) about the mean (solid line) and confidence interval (±standard deviation, shaded band) of the total evapotranspiration rate, Stot(t); 
and the predictions of Stot(t) obtained via, (b) ensemble Kalman filter and (c) maximum likelihood estimation. Both predictions (solid lines) are accompanied by the 
confidence intervals (shaded bands), even though the MLE-derived standard deviations are too small to be visible. In all plots, the dots indicate the true values of Stot.

Figure 5.  Temporal snapshots of water content, θ(x, t), estimated with ensemble Kalman filter (EnKF). The bottom graph 
shows the root mean square errors, 𝐴𝐴 (𝑡𝑡) and 𝐴𝐴 tot , for the θ(x, t) estimates obtained, alternatively, via EnKF and maximum 
likelihood estimation.
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Equation 30. Figure 6 exhibits the number of iterations at convergence (i.e., 
when the loss function reaches its minimum within prescribed tolerance) at 
different observation times. It reveals that our MLE procedure requires on 
average 13 iterations to converge at all time steps. Given its high precision 
(Figures 3–5), this makes MLE a viable tool for estimation of the root water 
uptake profiles and evaporation rates in the absence of the prior knowledge 
about the parameters Tmax(t) and Emax(t).

Figure 6 also provides a comparison of the computational costs per obser-
vation of our EnKF implementation (denoted by EnKF) and of EnKF(θ). As 
expected, the simulation times of both models increases with the number of 
ensemble members, Nsam. While Nsam affects the cost of our implementation 
only slightly, the computational time of EnKF(θ) grows nearly exponentially 
with Nsam; that is because EnKF(θ) solves the 2D Richards equation for each 
ensemble member. Since the MLE algorithm does not involve an ensemble of 
realizations, for comparison purpose, we plot the average computation time 
of MLE over the total observation time period. To sum up, our EnKF and 
MLE algorithms are significantly more efficient than EnKF(θ), with EnKF 
being around two orders of magnitude faster than EnKF(θ) and MLE being 
around one order of magnitude faster than EnKF, even when Nsam = 200.

6.  Conclusions
We proposed two alternative DA methods, EnKF and MLE, to infer ET rates 
and root water uptake profiles from a network of soil-moisture sensors placed 
in a heterogeneous soil. Our numerical experiments mimic drip irrigation of 
rows of plants with a non-uniform root density distribution. These experi-
ments served to assess the prediction accuracy and computational efficiency 
of both methods relative to each other and vis-à-vis EnKF(θ), the standard 

implementation of EnKF that updates the model predictions of water content. Our analysis leads to the following 
major conclusions.

•	 �Soil heterogeneity, spatial variability of root density, and irrigation practices (e.g., drip irrigation) used in 
smart agriculture result in complex flow patterns that preclude the one-dimensional treatments underpinning 
the current DA techniques for ET estimation.

•	 �Our EnKF and MLE algorithms provide accurate predictions of the total ET rate and spatiotemporal varying 
root water uptake, in the presence of considerable horizontal flow component.

•	 �Our EnKF and MLE algorithms are significantly more efficient than EnKF(θ), with EnKF being around two 
orders of magnitude faster than EnKF(θ) and MLE being around one order of magnitude faster than EnKF(θ).

•	 �The adoption of exponentially decaying learning rates in the MLE accelerates the computation by at least 
one order of magnitude in comparison with the MLE with constant learning rates used, for example, by Li 
et al. (2021).

•	 �The performance of EnKF hinges on the availability of an adequate initial guess of, expert opinion about, 
the model parameters Tmax and Emax. In the absence of this information, MLE supplemented with the Fisher 
information should be used.

•	 �The computational efficiency of our EnKF and MLE algorithms facilitates their deployment as a design 
tool for smart agriculture, for example, to optimize irrigation schedule and/or placement of drippers and 
sensors.

Even though our inverse modeling methods provide fast and accurate estimations of ET, a large amount of compu-
tational time is still consumed by solving the multi-dimensional Richards equation. One way to further accelerate 
this procedure is to treat a heterogeneous soil as a collection of one-dimensional isolated flow tubes (Sinsbeck & 
Tartakovsky, 2015; Wang & Tartakovsky, 2011), in a manner consistent with the Dagan-Bresler parameterization 
(Dagan & Bresler, 1983).

Figure 6.  (a) The number of iterations it takes the maximum likelihood 
estimation (MLE) algorithm to convergence, as function of time t; and (b) 
computational time per observation time step of ensemble Kalman filter and 
EnKF(θ), as function of ensemble size Nsam. The computational time of MLE 
is also plotted for comparison, even though it does not depend on Nsam.
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Data Availability Statement
There are no data sharing issues since all of the numerical information is provided in the figures produced by 
solving the equations in the paper.
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