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ABSTRACT: Lithium (Li) plating is a major challenge limiting the adoption of 100
fast-charging Li-ion batteries, yet its onset mechanisms remain elusive. We present
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a model of Li plating on a graphite particle coated with a solid electrolyte "E;BO cn‘\
interphase (SEI) layer to elucidate the coupled effects of ion transport, reaction $ % .
kinetics, and phase transformation. We derive an analytical expression that relates E &0 2!
Li-plating onset time to operating conditions and material properties and introduce 3 g .
a Li-plating diagram. Our framework captures the intricate mechanisms driving Li '§ 40 1
plating and anode potential drops, extending beyond existing limiting cases of % S,
surface ion saturation and electrolyte depletion. By providing an improved g 20 N
understanding of the interrelationships among key parameters, our findings provide 2 ’
valuable guidance for adjusting charging protocols, designing cell components, and %_2 0.4 0.6 0.8 1

engineering artificial SEI layers. Implementing these strategies can help mitigate Li

Li-ion stoichiometry

plating and ensure Li-ion battery safety and performance during fast charging.

impedes the widespread adoption of rapid charging for

Li-ion batteries."”” Critical issues arise when Li plating
occurs, including capacity fading, poor cyclability, reduced
reversibility and increased internal resistance, jeopardizing
batteries’ operational safety and structrural integrity.’ >
Interfacial instability associated with Li-metal deposition results
in the formation of Li dendrite, causing catastrophic failures in
Li-ion batteries.*” Understanding the mechanisms of Li plating
onset is essential to ensuring the safety and stable performance
of Li-ion batteries during fast charging.

During charging, Li-ions (Li*) migrate from the liquid
electrolyte and intercalate into the graphite anode. Multiple
physical and electrochemical processes, including liquid and
solid diffusion, electromigration and charge transfer reactions,
lead to variations in ion concentration and electric potential
profiles, as well as changes in overpotential at the electrode/
electrolyte interfaces. A further drop in anode potential,
especially under fast charging conditions, can make Li plating
thermodynamically favorable when the Li-plating overpotential
falls below zero. Experimental efforts to prevent Li plating
include design and optimizing various cell components, such as
coating graphite with solid electrolytes,® metals’ or functional
promoters,  electrolyte engineering'' such as using localized
high-concentration electrolyte,'"* and incorporating addi-
tives,"”'* and implementing anode potential-controlled charg-
ing protocols.'” These experimental investigations can greatly
benefit from physics-based electrochemical modeling. Such
models provide quantitative predictions of Li* transport and

Lithium (Li) plating is one of the major challenges that
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electrochemical reactions within each battery component,
offering valuable insights to refine strategies to mitigate Li
plating.

Modeling work on this subject is typically conducted at two
extremes: density functional theory (DFT) and pseudo-two-
dimensional (P2D) models. DFT provides atomic-scale insights
into diffusion pathways, formation energies, and phase
transitions influencing plating,'™"? but its computational
demands make it impractical for resolving pore-scale electro-
chemical interactions at electrode/electrolyte interfaces.””' On
the other hand, the computationally efficient P2D models treat
porous electrodes as one-dimensional (1D) continuum media,
limiting their ability to capture the in-depth mechanisms of
plating onset and transport phenomena.”” Moreover, P2D
models lose predictive accuracy under high current conditions
where plating is more pronounced.””** The ubiquitous presence
of an interface layer, such as the solid-electrolyte interphase
(SEI) or artificial coating layer, adds further complexities.
Previous studies have incorporated SEI film resistance into
Butler—Volmer kinetics at the anode/electrolyte interface,”> >’
though SEI is not purely an ohmic resistor.”® The detailed effects
of mass and charge transport within SEI, governed by its specific
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Figure 1. (a) Schematic representation of the 1D computational domain considered in this study. Our model consists of an anode particle Q,
and a cathode particle . that are immersed in liquid electrolyte €, within a Li-ion battery. We account for Li* diffusion, electromigration, ion
intercalation/deintercalation and Li plating kinetics in the 1D computational domain. (b) Li-metal is deposited on the graphite surface when
the Li-plating overpotential, 77, = ¢.(L,, t) — ¢.(L,, t) — Adhy i, drops below zero. (c) Illustration of Li concentration profile in the graphite

particle with phase separation.

physicochemical properties, are critical Zet remain largely
unexplored in the context of plating.””*’ Moreover, phase
transformation and separation occur during Li (de)intercalation
in electrode materials such as graphite and lithium iron
phosphate, causing uneven Li distribution and impacting the
availability of Li intercalation sites in the electrodes.’”*” These
effects become more pronounced during fast charging.”** The
coupling of these phenomena introduces additional complex-
ities and computational cost to resolve the Li* concentration
profiles in the solid particles.***

These challenges have led existing studies to attribute the
mechanisms of plating onset to ion concentration saturation at
the intercalation-host surface,**” ion depletion in the electro-
Iyte at the solid/liquid interface,**™*" or large ion concentration
gradients at the solid surface.”' However, plating initiates even at
very low states of charge before ion concentration at the solid
surface saturates’” or at current densities significantly below
their limiting value.*® This suggests that plating results from a
complex interplay among multiple physical and electrochemical
processes rather than being governed by a single limiting factor.
Currently, a comprehensive theoretical framework of plating
mechanisms that accounts for these complexities is lacking.

We fill this void by presenting a mesoscale model for Li plating
on a graphite particle coated with an SEI layer. The model
incorporates ion diffusion and electromigration, as well as the
competition between ion intercalation and Li plating kinetics.
Our analysis generalizes the conditions for Li plating beyond
previously reported limiting cases. We derive an analytical
expression that relates the onset time of Li plating to measurable
characteristics, such as current density and material properties,
enabling a Li-plating diagram that delineates plating conditions.
These results offer valuable insights for delaying or even
preventing Li plating through adjustments to charging protocols
and the design and selection of cell components. Such decisions
should be informed by the material properties and Li"
stoichiometry. While applied to Li plating, this model has
broader relevance for understanding metal plating in various
electrochemical systems.

We study Li plating on a graphite anode in a Li-ion battery.
Our model consists of an anode particle €, and a cathode
particle Q. that are immersed in liquid electrolyte Q. (Figure
la). Past experimental works indicate that Li platin
predominantly initiates at the anode/separator interface.*"**~*
Multiparticle modelinég confirms this interface as the primary site
for plating initiation.*®"” This study focuses on single particles at
the anode/separator interface to capture the key mechanisms
driving Li plating onset, consistent with literature that
emphasizes the critical role of this re:gion.36’48 We ignore
convective ion transport in the electrolyte and assume the

1597

electrolyte to be electroneutral, where the concentrations of
cations, c,(x, t) and anions, c_(x, ), are equal, i.e, ¢, = c_ = c,.
Mass conservation of Li* in the electrolyte is described by the
Nernst—Planck equation,

dc, ],
= [ <x<2L-L,t>0

ot Ox (1a)

Mass fluxes of cations, J, (x, t), and anions, J_(x, t) are induced
by the spatial variability of ion concentration c,(«, ) and electric
potential ¢, (x, t),”

oc,
J,=-D| =+

ox

z,c F o
RT ox

(1b)

where D, and z, are the diffusion coefficients and charge
numbers of the cations and anions; F is the Faraday constant.
The charge conservation equation is given by

p)
£=O,La<x<2L—La,t>0

0x (2)

where J =z Fl+z F s the electrolyte current density.
Equations (1) and (2) are subject to the boundary conditions,
_]+(La) t) = ]+(2L - La} t) :I/F; _j(La; t) :J(ZL - Lal t)
= I and initial condition, c,(x, 0) = c,, where I is the applied
constant charging current density.

At the anode/electrolyte interface, Li* are inserted into the
graphite particle through intercalation reactions with electrons
(e7), C4 + nLi" + ne~ — Li,Cg, while Li* are deintercalated from
the cathode into the liquid electrolyte. The intercalation
reactions are described by the Butler—Volmer (BV) equations,
I',int = - 2ki,intF Cice(l - C/C

i i/ ~i,max

. F
X Slnh[ﬁ(ﬁ - ¢e - []i(ci/ci,max))] (3)

here, i = a, ¢ denotes the index representing anode and cathode
quantities. U, is the open circuit potential that depends on the Li
filling fraction ¢,/¢; . ki o is the reaction rate constant and ¢; ,,,
is the maximum Li concentration that could be stored in the
particles. At x = L, we set ¢, = 0. Li plating becomes
thermodynamically favorable when the Li-plating overpotential
(1= .= pe=Ad.y1) drops below zero. This negative potential
drives Li" to undergo Faradaic reactions with ¢, Li* + ¢~ — Li,
which results in Li plating on the graphite surface (Figure 1b).
The plating kinetics also follows a BV equation,*”°
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Figure 2. Li-plating onset time £, computed by eq 8, varies with (a) current density I and intercalation rate constant k, ;,,, (b) initial and
maximum Li* concentrations in the anode, ¢, and c, ., (c) particle size L, and Li* diffusivity D,, (d) SEI layer thickness L, and diffusion
coefficient Dgg;. In each plot, all parameters, except for the ones under investigation, are set to their reference values as specified in Table S1, and

Lgg; = 0 when SEI properties are not explored in a—c.

Ona Fiy,y Fry
IPI = - kPIF(Ce/C ) "X exp| &, RT — eXp| — ey RT
4)

where k,; is the plating reaction rate constant; a,, and a, are the
anodic and cathodic charge-transfer coeﬂiaents, respectively;
Ay pi is the equilibrium potential of Li plating reaction given by

the Nernst equation,

¢eqp1= —ln# +E° - 2wk

' F c F (%)
where we account for the influence of electrode/electrolyte
interfacial energy, 2wyk/F, since the creation of additional
surface area results in a surface energy penalty. @ and y are the
molar volume and surface energy of Li metal; k is the curvature
of the electrode/electrolyte interface, k = 1/L,. I;;, and I, are
related to the total current density I,

Ia,int + pIpl = I, X = La (6&)

I

cint T

—I,x=2L - 2L, (6b)

p = 0 indicates that only ion intercalation occurs at the anode,
while p = 1 signifies the occurrence of Li plating.
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With azimuth and polar symmetry in spherical coordinates,
ion concentration ¢;(r, t) in the electrode particles is described by
the diffusion equations,”’

6t_r6r r

o, 10 ,0¢;
= Dr— 0<r<L,t>0
™)

where D; is the solid diffusion coeflicient. Equation 7 is subject to

the boundary conditions, Da%(r =L,t)= —DC%(r =L,t)=

a
é, Da%(r =0,t) = —Dca—crc(r =0, t) = 0 and initial condition,

¢(r,0) = ¢,0.We also neglect the effects of solid particle volume
changes, stress generation, and dynamic SEI layer growth. We
assume the SEI is fully formed and characterized by predefined

* diffusion coefficient Dg; (Figure 1b). The SEI influences
ionic transport by modifying key parameters, D, ¢, 0, €, may and
k. as functions of the graphite core volume fraction and
transport properties of the graphite core and SEI, given in
Appendix B.

From eqs 1—7, we derive an analytical expression of plating
onset time, 7,5, with the detailed derivation provided in Appendix
B,

https://doi.org/10.1021/acsenergylett.5c00322
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fe @ 1 e N L
ﬁ ~ = f[ca(Laf tpl)/ca,max]
ka,int ¢ Ca,ma.x (8)
as a function of dimensionless quantities, ¥ = x/L, =tDe/ L=
¢/co, and model parameters D = D/D™, k = Lk/D™, capillary

number Ca = wy/(RTL,), normalized interfacial current density
I=LI/(D*Fc,) and open circuit potential U = FU/ (RT); where
fis a function of the Li* stoichiometry, & =¢,(L,, £,1) /€, may in the
anode,

£(&) = &1 - £)e" )
and ¢,(L,, ) approximates the large-time ion concentration at
the anode surface,

I 1. IL
~a(LaJ t) = 31 t = + Ea,O
L, SD, (10)

Figure 2 illustrates the Li-plating onset time t,), calculated by eq
8. We investigate the impact of various parameters, including
current density I, intercalation rate constant k,;,, initial and
maximum Li* concentrations, ¢, and ¢, ., particle size L,, Li*
diffusivity D,, SEI layer thickness Lgg; and diffusion coefficient
Dgg;. In each plot, all parameters, except for the ones under
investigation, are set to their reference values as specified in
Table S1, and Lgz; = 0 when SEI properties are not under
investigation. A small current density or a large intercalation rate
constant, a small initial Li" concentration, a large maximum Li*
concentration or a large Li* diffusivity in the anode particle, a
thin SEI layer with high Li* diffusivity, will delay the onset of Li-
plating. Our analytical expression also shows that the surface
energy term, e~ has negligible impact on Li plating despite its
critical role in affecting dendrite growth.””® The bulk ion
concentration ¢, does not impact Li-plating onset. However, an
electrolyte with a higher salt concentration may result in the
formation of a thinner and more compact SEI layer,”> >
influencing plating dynamics. These findings can provide
valuable insights into the design of artificial SEI layers with
specific thickness and Li* diffusion coeflicients to effectively
delay the occurrence of Li-plating.

Next, we include the impact of phase transformation and
separation during Li (de)intercalation in electrode particles
(Figure 1c). This can be described with a variable solid diffusion

coefficient®”*>°¢ in eq7, ie,
d0(0)
D(c) = —(1 — 6)6D!
(@) = ~(1 - a5 o
where 6 = ¢/¢; ., The resulting concentration profiles are

similar to the solutions of the corresponding moving boundary
problem for phase transition.”® The analytical solution of large-
time ion concentration at the anode surface given in eq 10 holds
by treating the concentration-dependent diffusion coefficients as
piece-wise constants.””

A Li-plating diagram is shown in Figure 3a in the phase space
spanned by dimensionless parameters, current density I,
reaction constant Ea,im, capillary number Ca, maximum Li*
concentration ¢, .y Li* concentration at the solid surface Cof
and reference concentration ¢®. This is governed by the
condition under which no Li plating occurs,
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Figure 3. (a) Li-plating and (b) anode potential diagrams in the
phase space spanned by dimensionless current density I, reaction
constant k,;,, capillary number Ca, maximum Li* concentration
C,map Li* concentration at the solid surface ¢, reference
concentration ¢°, and electrolyte Li* concentration at the liquid/
solid interface T,, described by eqs 12 and 13. The solid line in (a)
separates the non-plating and plating regions, while in (b), it
separates the positive and negative anode potential regions, such
that for given operating conditions and material’s physical and
electrochemical properties, the Li-plating overpotential 7,, or the
anode potential ¢, is predicted to either drop below zero (red region
to the right of the solid line) or remain positive (green region to the
left of the solid line). In (b), the dashed line denotes the critical
value of Li* stoichiometry in the anode, £_,, defined by (B15), to the
right of which this diagram is applicable. In (a), the Li-plating
diagram is compared with experimental data from refs 2 and 58—60.
Details of the experimental conditions and parameters are provided
in Supporting Information Table S2. In (b), surface Li* saturation
(€4¢/Camax — 1) and liquid Li* depletion at the anode/electrolyte
interface (¢, — 0) are two limiting cases that lead to a negative anode
potential.

2

1
- 5|z <f(&)
N (12)
where & =%, /¢, .., represents the final Li* stoichiometry at the
anode particle surface. The solid line separates the non-plating
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and plating regions such that for given operating conditions and
material’s physical and electrochemical properties, the Li-plating
overpotential 7, is predicted to either drop below zero (red
region to the right of the solid line) or remain positive (green
region to the left of the solid line). For a given final Li*
stoichiometry, plating is more likely to occur under fast charging
conditions or when the Li intercalation rate constant or
maximum Li* concentration is small. This Li-plating diagram
provides an improved understanding of the interrelationships
among key parameters and identifies specific operating
conditions that prevent Li plating. We validate our plating
diagram against experimental data. This process proved to be
challenging due to the frequent reporting of charging conditions
in terms of C-rate rather than current density and the lack of
detailed material properties in many experiments. We compiled
experimental data that included the necessary parameters and
real-time plating detection from refs 2, 58—60. A detailed
summary of the operating conditions and parameters for these
experiments is provided in Information Table S2. All
experimental results available to us align with the predictions
of our plating diagram. Specifically, data points 6 and 9 that
represent conditions leading to plating onset in the experi-
ments””% are located close to the boundary separating the
plating and non-plating regions. This further confirms the
diagram’s predictive accuracy in capturing the onset of Li plating
under various conditions. Figure 3b presents the anode potential
diagram in the phase space spanned by dimensionless
parameters, as described by

2

1 1
——|—<
ka, int\/ge ga, max f(gf)

which ensures that the anode electric potential remains positive.
The detailed derivation is provided in Appendix B. ¢, is the
steady-state Li* concentration in the electrolyte given by eq B2
at x = L,/L. The dashed line represents the critical value of Li"
stoichiometry in the anode, defined by eq B15, to the right of
which the characteristic diffusion time of Li" in the liquid
electrolyte is smaller than the final charging time, rendering this
diagram applicable. Our anode potential diagram aligns with
previous studies under scenarios where the surface Li
concentration in the anode particle saturates (¢,¢/C, . —
1)°**” or when Li* are depleted at the anode/electrolyte
interface (¢, = 0).**7*" These limiting cases of negative anode
potential coincide with our diagram’s predictions, falling within
the red region where the anode potential drops below zero. The
anode potential diagram differs from the plating diagram in that
it relies on ion transport in the liquid electrolyte. As c, is smaller
than the bulk ion concentration, there exists a region where data
points fall within the range where the anode potential becomes
negative while remaining in the non-plating regime. We can
calculate the time at which the anode potential drops to zero
ts.<o by eq B11, and find that it occurs earlier than the plating

(13)

onset time t,. This phenomenon arises from the combined
effects of negative electrolyte potential and concentration
overpotential at the anode/electrolyte interface (eq S). This
finding is consistent with prior studies in the literature indicating
that gragléizte can sustain a small negative potential before plating
occurs.

We also carry out numerical simulations to capture the details
of electric potential and ion concentration profiles and temporal
evolution of plating overpotential. These simulations consider
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the influence of applied current densities, diffusion coeflicients,
and intercalation and plating rate constants on ion transport and
reaction kinetics. The materials and parameter values used in our
model and the numerical results are provided in Supporting
Information. Specifically, in Figure 4, we compare the temporal
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Figure 4. Temporal evolutions of Li-plating overpotential 7, at the
anode surface (x = L,) under scenarios with and without phase
transformation in the graphite particle at a constant current density
of I = 3 mA/cm’. Snapshots of Li* concentration profiles within the
graphite particle show that including phase transformation results in
sharper concentration gradients and higher Li" content at the
graphite surface, leading to earlier plating onset.

evolution of Li-plating overpotential (11P1) on the anode surface
(x = L,) under scenarios with and without phase transformation
by using constant and variable diffusion coeflicients in the
graphite particle at a constant current density of I = 3 mA/cm’.
For consistency, diffusion coefficient D, in eq 11 is chosen such

that fo ' Dy(c;)d0 = D, matching the constant value specified in

the Supporting Information Table S1. We also present snapshots
of Li* concentration distributions in the graphite particle over
time. When phase transformation is included, the concentration
profiles at later stages show pronounced sharp changes, with
phase separation leading to a higher Li* concentration at the
graphite surface. This behavior accelerates the onset of Li plating
compared to models that use a constant diffusion coefficient and
exclude the phase transition effects. In this example, neglecting
phase transformation phenomena results in ~35% delay in the
predicted time for Li-plating occurrence. Our results highlight
the critical role of phase transformation in accurately predicting
plating onset.

Our findings reveal the mechanisms behind anode potential
drops and their potential connection to Li plating. A negative
anode potential is not solely a result of Li* surface saturation in
the solid particle or Li* depletion at the anode/electrolyte
interface, as commonly assumed. Instead, it can arise before the
solid surface ion concentration saturates or the applied current
density exceeds the limiting value that leads to Li* depletion.
This phenomenon results from a complex interplay between
solid and liquid diffusion, electromigration, intercalation, and
plating kinetics. First, slow solid diffusion or high current density
creates a high concentration gradient near the anode particle
surface, impeding ion diffusion from the surface to the interior.
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Second, the presence of a high surface concentration of Li* in the
anode particle, a low electrolyte Li* concentration at the anode/
electrolyte interface, or a small intercalation reaction rate
constant makes Li intercalation into the anode particle
kinetically challenging. The occurrence of phase transition and
phase separation within the anode particle further amplifies the
Li* concentration and its gradient near the particle surface,
exacerbating these effects. Third, the formation of SEI layer with
low solid diffusion coeflicient hampers ion diffusion and
introduces interfacial charge resistance. These factors collec-
tively impact the availability of Li" in the liquid electrolyte and
the occupation of intercalation sites in the solid particle, creating
barriers for charge transfer reactions. To maintain current
density, the negative intercalation overpotential must further
decrease. Additionally, the anode intercalation equilibrium
potential decreases as Li* intercalates into the particle, and the
electrolyte potential at the anode/electrolyte interface reduces
under high current density or small diffusion coeflicient in the
liquid electrolyte. These combined effects lead to a drop in the
anode potential. However, a negative anode potential may
indicate conditions favorable to Li plating but it is not equivalent
to its occurrence.’” This distinction stems from the
independence of Li-plating overpotential, 1, = ¢,(L, t)—

$e(Lyy £)—=Adpeyy, from ion transport in the liquid electrolyte.
The effect of local concentration on altering the anode potential
is counteracted by the concentration overpotential,
R—FTIn ¢,(L,, t)/c® The often reported link between Li plating
and ion depletion”®~*" can be attributed to the fact that plating
typically occurs before ion depletion, e.g, the saturation of
graphite surface (¢, /¢, — 1) proceeds the Li* depletion (Z,
— 0) in the electrolyte 963 Currently, no experimental data
exist in the opposite regime, where ion depletion occurs while
the solid surface concentration remains low. Our insights
provide a foundation for future experimental investigations of Li
plating in this regime, which will aid in further understanding
plating mechanisms and validating our theory.

In conclusion, we developed a mechanistic model for Li
plating on a graphite particle coated with an SEI layer in a Li-ion
battery. This model accounts for ion transport, reaction kinetics,
and phase transformation phenomena, exploring the complex
interplay of these processes and their effects on the onset of Li
plating. Our analytical framework generalizes the conditions for
Li plating and introduces plating and anode potential diagrams
that offer insights into the key factors driving anode potential
changes and plating initiation. Our analysis leads to the
following major conclusions.

e Our plating diagram captures the onset of Li plating under
various operating conditions and material properties in
the experiments. The simplicity of this diagram assists in
designing charging protocols, e.g., decreasing current
density as state-of-charge increases.

e Our analysis shows that Li plating is more likely to occur
under fast-charging conditions, or with a small inter-
calation rate constant, large solid surface concentration,
low maximum Li* concentration and low Li* diffusivity in
the anode particle, or with an SEI layer that has low Li*
diffusivity. The presence of phase transformation and
separation further exacerbates Li plating. Surface energy
has a negligible effect on the onset of Li plating.

e Our results clarify that the onset of a negative anode
potential does not signal plating initiation, as is commonly
assumed. The anode can sustain a negative potential
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before plating occurs. Our analysis shows that changes in
anode potential are influenced by ion transport in the
liquid electrolyte, while the Li-plating overpotential is
independent of ion transport in the electrolyte.

e Surface saturation is the limiting case that leads to Li
plating. Surface saturation and electrolyte depletion are
the two limiting cases that lead to negative anode
potential. Our theory reflects the intricate and coupled
mechanisms underlying Li plating and anode potential
drops beyond these specific instances.

These findings provide practical guidelines for optimizing
charging protocols, cell design, and interface engineering. This
work lays the foundation for future studies aimed at enhancing
the performance and safety of fast-charging Li-ion batteries

through physics-based design principles.

Bl APPENDIX A

SEI Effects

We consider the anode particle as a composite sphere whose
active material (graphite) core is coated with an SEI layer. We
model this composite sphere as a homogeneous anode particle
with derived physicochemical properties that ensure the global
conservation of mass, energy, and charge.‘“’57 Here, SEI layer
impacts the overall ionic transport in this anode particle by
altering the Li* diffusion coefficient D,, initial and maximum Li
concentrations ¢, and ¢, ., and reaction rate constant k.
They are expressed in terms of the volume fraction of the
ggalgaliste core and transport properties of the graphite core and

b [1m v - v a0 4 0 - v
) Dy 2(1 =177 + 67
-1
/ /
30 - ViR .\ V2 3}
1-W Dgr (Ala)
Ca,max = Cgr,max‘llf Ca,O = Cgr,O‘fl (Alb)
and
| 1/3
o = ke V;/é\/LZVl
a,int gr,int 1/3
7+ 2V, (Alc)

where V| is the volume fraction of graphite active material in the
composite anode, i.e., Vi = (L,=Lsg1)*/L3; Dy Crman Cgro and
kg ine are the Li ion diffusion coeflicient, maximum and initial Li
concentrations, and reaction rate constant in the graphite

particle; Dgg; is the Li* diffusivity in the SEI layer.

B APPENDIX B

Plating Onset Conditions
We introduce dimensionless variables

L _ X = Dref z 43 ¢ _ Fn
xX=— = — —
L 2T RT' ' RT (Bla)
and model parameters
c)
N D ~ Lk
D= ref’ EG = C_’ k= ref
D+ ‘o D+ (B1b)

We also define the capillary number
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wy

" RTL,

(Blc)

and the normalized interfacial current density T and open circuit
potential U as

- LI ~ FU
I=——0=—
D} Fe, RT (B1d)

Unless specified otherwise, all the quantities below are
dimensionless, even though we drop the tildes to simplify the
notation.

The steady-state Li* concentration ¢, and electric potential ¢,
in the liquid electrolyte at the final charging times can be solved
analytically,

c(x) = ZLDJr(x -1+ 1,¢4=Ic (52)

Prior to the onset of plating, the ion concentration inside the
anode particle with a constant diffusion coefficient D, can be
determined using Laplace transform,”’

2
IL, a(eVh _

a

C
e—r\ﬂ/Dz) + a_,O

Ca(r’ t) = ‘["}_bl l

(B3a)

where 4 is the Laplace-transform variable and L;" denotes
inverse Laplace-transform and

1
(Lam + l)e_Lﬂ\/TDa + (La\/TDa _ l)eLa\m
(B3b)

We can obtain c,(r, t) either numerically or analytically for large
times t.°" The large-time approximation of Li* concentration on
the anode particle surface, before plating occurs, is given by

3. I,
oLy t) = —t+
L SD,

a a

a

+ ¢
N (B4)

As charging progresses and the anode electric potential
decreases, in eq 3, we have

exp[—0.5() — &) — U/, mar)]
> eX‘p[OS(@ - ¢e - l]a(ca/ca,max)]

By solving for the Li-plating overpotential 7, from a
dimensionless form of eq 3, we obtain

(Bs)

Texp[—0.5U,(c,/¢, may) — Cal

ka,int\ Ca(l - Ca/ca,max)

The onset of Li plating is reached when the Li-plating
overpotential 77, drops to zero, leading to the condition,

Texp[—0.5U(c,/ ¢, ma) — Cal .

ka,int Ca(l - Ca/ca,max)

My = —2In
(B6)

(B7)

we combine eqs 6a with p = 0, eqs B7 and B3 to obtain the Li-

plating onset time, £,

2

; = f[ca(La1 tpl)/ca,max]

a,max

Ie—Ca
/| ©
ka, int ¢

where fis a function of the Li* stoichiometry in the anode,

(B8)
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f(&) = £(1 - £)eH

Therefore, the condition under which no Li plating occurs can
be expressed as

(B9)

2

)

Ca,max

Ie—Ca

(C]
ka, int ¢

(B10)

where &¢=c, ¢/c, . represents the Li* stoichiometry at the anode
particle surface at the final charging time t;

Similarly, by combining eqs 3, 6a, B2 and B3, we can compute
the time at which the anode potential drops to zero, 4 .,

2
) L = f[ca(Laf trﬁa<0)/ca,max]

Ca, max

.
ka, int\/c—e

and the condition under which the anode electric potential
remains positive,

(B11)

2
I 1
(ka,int\/z ] Ca,max < f(gf)

Here, c, is the steady-state Li* concentration in the electrolyte
given by eq B2 at x = L,. The validity condition for eq B12 is met
when the characteristic diffusion time of Li" in the liquid
electrolyte is much smaller than the final charging time ¢,

(B12)

2
£ D+La) <k (B13)
The condition in eq B13 for eq B12 can be expressed as
£ <& (B14)
where
£ - 3(L - L) L, ., Go
C DLGmx  SDlomsx Comm (B1S)

if we adopt the large-time approximation for c, given by eq B4.
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