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The solid-electrolyte interphase (SEI) plays a crucial role in Li-metal batteries, yet its influence on dendritic growth remains poorly
understood. We present a physics-based stability analysis of dendrite initiation explicitly incorporating a SEI layer between the Li-
metal anode and electrolyte, without assuming electroneutrality. Our model examines how SEI transport properties, thickness, and
interfacial energy interact with electrolyte characteristics (diffusion coefficient, permittivity, interfacial energy) and operating
conditions to govern interfacial morphological stability. We derive closed-form expressions linking dendrite growth rate to
measurable parameters and construct analytical phase diagrams identifying regimes of stability and instability under both
underlimiting and overlimiting conditions. Relaxing the electroneutrality assumption enables the model to capture space-charge
effects essential for understanding dendrite behavior at high current densities. The analysis reveals that the SEI can either suppress
or promote dendrite growth depending on its interaction with the electrolyte. Interfacial stability is enhanced by a high SEI ionic
conductivity-to-electrolyte diffusivity ratio and a high Li-SEI to Li-electrolyte interfacial energy ratio. These findings show that
stability is governed not by SEI properties alone, but by SEI-electrolyte coupled property dyads that define the phase space. This
framework enables predictive interfacial design and offers a roadmap for tailoring artificial SEI to specific electrolytes.
© 2025 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI:
10.1149/1945-7111/adf013]
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Dendritic lithium (Li) growth remains one of the most critical
challenges limiting the safety and longevity of Li-metal batteries.
Dendrites form during charging when Li deposition at the anode
becomes non-uniform and grow to needle-like metallic Li protru-
sions. This interfacial instability typically arises from a transition
from reaction-limited to transport-limited deposition kinetics, espe-
cially under high current conditions.1,2 Factors influencing this
instability include the ionic transport properties in the electrolyte,3

mechanical stress in the electrode-electrolyte interface,4 the micro-
scale roughness of the Li surface,5 and the interfacial chemistry and
structure of the solid-electrolyte interphase (SEI).6 Once formed,
dendrites can penetrate the separator and cause internal short circuits
or become electrically disconnected, resulting in inactive “dead Li”
and capacity loss.2,7 Understanding and controlling dendrite initia-
tion is critical for the safe and efficient operation of high energy
density Li-metal batteries.

SEI is a nanoscale interphase formed on the anode surface from
electrolyte decomposition and metal-electrolyte reactions during
initial charging cycles. It typically exhibits a heterogeneous, multi-
layered structure that comprises inorganic compounds near the
electrode and organic species closer to the electrolyte.8–10

Although thin (typically 10–100 nm),11 the SEI plays an important
role in mediating Li-ion transport and electrochemical reactions.
Artificial SEI layers have been proposed to enhance anode protection
by replicating or improving the natural SEI.12 Conventionally, an
ideal SEI is expected to exhibit high Li-ion conductivity, low
electronic conductivity, and robust mechanical and thermal stability
to enable fast ion transport and prevent cracking and continuous
electrolyte consumption.13 Yet, its dynamic formation and evolution
under battery operation remain elusive, and neglecting it in
theoretical models can obscure key mechanisms behind dendrite
initiation and propagation.2,14

The experimental study of SEI’s role in dendrite suppression is
challenging due to its thinness and chemical complexity. Advanced
in situ and ex situ techniques, including cryo-TEM, SEM, and AFM,
have revealed both protective and destabilizing roles of the SEI,
depending on its composition, nanostructure and morphology, and

the resulting physical and electrochemical properties. SEIs with high
ionic conductivity have been shown to reduce dendrite formation,
but a quantitative description between ionic conductivity and
dendrite suppression remains unclear.15,16 Interfacial energy also
plays an important role, materials with higher surface energy tend to
suppress dendrite growth by stabilizing the electrode interface.17

Cryo-TEM studies indicate that cracking and localized mechanical
failure of the SEI exposes fresh Li, which acts as new nucleation
sites for dendrites.18 Conflicting results have emerged regarding
mechanical modulus: high-modulus SEIs are theoretically predicted
to suppress dendrites, yet low-modulus, flexible organic-rich SEIs
have been observed to enable uniform Li deposition.4,19,20 This
contradiction suggests that mechanical properties alone are insuffi-
cient and must be complemented by a coupled physico-electroche-
mical understanding. Additionally, uniform SEI thickness has been
identified to avoid localized current hot spots, though few studies
have quantified this factor experimentally.21 These findings under-
line both the promise and the uncertainty in designing SEIs to
prevent dendrite initiation effectively. A systematic framework is
needed to describe and quantify how SEI properties, i.e., ionic
conductivity, interfacial energy, mechanical modulus, and thickness,
collectively influence dendrite growth under varying operating
conditions.

Given the experimental challenges, computational modeling
provides a promising pathway to uncover the fundamental mechan-
isms of dendrite growth and SEI influence. However, most existing
models simplify or omit the SEI due to its thinness relative to the
bulk electrode and electrolyte. Classical porous electrode models,
i.e., pseudo-2-dimensional models often treat the SEI as a lumped
resistance term or ignore it entirely,22–25 with few efforts accounting
for mass, charge and thermal transport within the SEI based on its
specific physicochemical properties.26–29 Pore-scale methods such as
phase-field modeling30 and smooth particle hydrodynamics31 have
incorporated SEI effects by modifying reaction kinetics, offering
valuable insights into interfacial dynamics. More recent studies,
including kinetic Monte Carlo simulations32 and linear stability
analyses33 treat the SEI more explicitly. These models often adopt
the electroneutrality assumption to simplify electrolyte behavior;
however, this assumption breaks down near the electrode under high
current densities.3 Thus, modeling approaches that capture both thezE-mail: weiyu.li@wisc.edu
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nanoscale physics of the SEI and the non-electroneutral behavior of
the electrolyte remain rare but necessary for a predictive under-
standing of dendrite initiation. Emerging studies on dendrite
suppression using interfacial buffer layers between Li-metal and
solid electrolytes suggest that dendrite suppression depends not
solely on SEI properties but on the coupled behavior of the SEI-
electrolyte system.34 This coupling may help explain inconsistent
findings in the literature regarding SEI modulus and interfacial
stability. Specifically, stabilization and destabilization effects must
be interpreted based on SEI-electrolyte dyads, which reflect coupled
physico-electrochemical-mechanical interactions.

In this work, we present a physics-based linear stability analysis of
dendrite initiation that explicitly incorporates a SEI layer between the
Li-metal anode and the electrolyte, without assuming electroneu-
trality. We examine how SEI transport properties (e.g., ionic
conductivity), thickness, and interfacial energy at the Li-SEI interface
interact with electrolyte properties (e.g., diffusion coefficient, permit-
tivity, and Li-electrolyte interfacial energy) and operating conditions
to influence interfacial stability. Our analytical model reveals that the
SEI can either stabilize or destabilize the interface, depending on the
SEI-electrolyte dyad’s coupled properties. We derive closed-form
expressions linking dendrite growth rate to measurable parameters and
construct analytical phase diagrams that map regimes of stability and
instability based on key nondimensional ratios, such as the ionic
conductivity-to-diffusion coefficient ratio and the interfacial energy
ratio. These diagrams identify conditions under which the SEI
enhances interfacial stability and suppresses dendrite growth com-
pared to the absence of an SEI layer. We demonstrate that interfacial
stability is not governed by SEI properties alone, but by their dyadic
interaction with the electrolyte environment. This framework provides
design principles for SEI engineering by identifying optimal combi-
nations of SEI and electrolyte properties. As such, effective SEI
design must be tailored to the specific electrolyte system.

Mathematical Formulation

Problem description.—We study Li deposition on a Li-metal
anode in a two-dimensional half-cell domain that includes a SEI
layer, Ω= Ωan ∪ ΩSEI ∪ Ωel. As shown in Fig. 1, the domain consists
of three regions: the Li-metal anode Ωan, the SEI layer ΩSEI, and the
liquid electrolyte Ωel. Initially (at time t = 0), the interface Γin(t)
between the Li-metal anode and the SEI layer is flat, coinciding with
the plane x = 0, i.e., Γin(0)= x= (x, y)⊤: x= 0, 0< y< B. A
negative electrostatic potential φe is applied to the electrode surface
Γin(t) at all times, while the potential at the outer edge of the
electrolyte (x = L) is maintained at 0.

The SEI/electrolyte interface Γout, separating ΩSEI from the liquid
electrolyte Ωel, remains flat at all times. We relax the assumption of
electroneutrality in the electrolyte and neglect fluid convection due
to the thinness of the cell, treating the electrolyte as immobile. The
initial concentration of lithium cations, Li+, in the electrolyte is c0.

We model the SEI as an electronic insulator and an ionic
conductor, with a constant Li+ concentration c+.

6,34 The SEI layer
is considered pre-formed with a fixed thickness L1, and no Faradaic
reactions occur at the SEI/electrolyte interface Γout. The SEI is
assumed inert to anions. At the Li-metal/SEI interface Γin(t), Li
cations (Li+) undergo Faradaic reactions with electrons (e−),
reducing to Li atoms, i.e., Li+ + e− → Li. The deposited Li
increases the thickness of the anode h(0)(t).

Our objective is to identify the conditions and system parameters
that lead to dendrite initiation during electrodeposition, with a key
focus on determining the SEI/electrolyte dyad properties that can
mitigate dendrite formation. We specifically examine how transport
phenomena within the SEI layer influence the stability of the
deposition process, as characterized by the temporal evolution of h
(y, t). Mechanical phenomena such as SEI fracture, elastic deforma-
tion, or growth dynamics are beyond the scope of this model.

However, interfacial energy effects are included through capillarity
terms that penalize the creation of new surface area.

Governing equations.—Liquid electrolyte.—Under isothermal
conditions and in the absence of a magnetic field, we define the mass
flux of cations and anions at any point x= (x, y)⊤ ∈ Ωel =
{x: L1 < x< L, 0< y< B} in the liquid electrolyte,3

ϕ= − ∇ + ∇ [ ]± ± ±
± ±⎛

⎝
⎞
⎠

D c
z c F

RT
J , 1el

where c± are the concentrations (molm-3) of the cations and anions;
φel is the electric potential (V); D± and z± are the diffusion
coefficients (m2s−1) and charge numbers (-) of the cations and
anions; F is the Faraday constant (s·A/mol), R is the gas constant
(J/mol/K), and T is the temperature (K). The Nernst-Planck Eqs.
describe the mass conservation in the electrolyte,

∂
∂

= −∇· ∈ Ω [ ]±
±

c

t
J x, . 2el

We relax the assumption of electroneutrality (z+c+ + z−c− = 0) in
the liquid electrolyte, where the electric potential, φel, is governed by
the Poisson equation,

ϵ ϕ− ∇ = ( + ) ∈ Ω [ ]+ + − −F z c z c x, , 32
el el

where ϵ is the absolute permittivity of the solvent (F m−1).

Solid-electrolyte interphase (SEI).—The SEI is modeled as an
electronic insulator and Li+ conductor.6,34 The Faradaic reactions of
Li+ occur exclusively on the anode surface, not at the interface
between the electrolyte and the SEI. The spatial distribution of the
electric potential, φSEI(x, t), within the SEI is governed by the
Laplace equation,

σ ϕ∇· = = − ∇ ∈ Ω [ ]i i x0, , , 4SEI SEI SEI SEI SEI

where σSEI and iSEI are the ionic conductivity (S m−1) of Li+ and the
current density (A/m2) in the SEI. At the Li-metal surface, the
normal component of iSEI is related to the applied current density I,

· = ∈ Γ [ ]In i x, . 5SEI in

Figure 1. Schematic representation of a two-dimensional half-cell domain
Ω = Ωan ∪ ΩSEI ∪ Ωel. The SEI layer ΩSEI separates the Li-metal anode Ωan

from the liquid electrolyte, Ωel. The anode surface, Γin(t), evolves over time
due to electrodeposition, while the interface Γout between the SEI layer and
the electrolyte remains fixed.
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The interfacial current density I is given by the Butler-Volmer
kinetic,

γ
α

η ωγ κ

α
η ωγ κ

= −
+

− ( ∈ Γ ) −
+
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SEI
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where k0 is the reaction rate constant (mol·m2 s−1), γts is the activity
coefficient of the transition state for the Faradaic reaction (-), z is the
number of electrons involved in the electrode reaction, αan and αcat

are the anodic and cathodic charge-transfer coefficients (-), we set
αan= αcat = 0.5, cΘ is the standard concentration, ω is the molar
volume of Li-metal (m3 mol−1), γLi

SEI is the isotropic interfacial
energy of the Li-metal with the SEI (J m−2), and κ is the mean
curvature of the electrode’s surface (m−1). The activation over-
potential ηα(x ∈ Γin, t) is defined as,

η ϕ ϕ= − ( ∈ Γ ) − [ ]α
Θt Ex , 7e SEI in

where EΘ is the standard electrode potential. We set γts= 1 and
EΘ = 0.

At x = L1, the interface between the SEI and the liquid electrolyte
is inert to anions, i.e., the normal component of the mass flux of
anions, = ( )− − −

⊤J JJ ,x y, , , is 0,

( ) = [ ]−J L y t, , 0. 8x, 1

The normal component of the current density in the SEI,
= ( )⊤i ii ,x ySEI SEI , SEI, , at x = L1 is proportional to the normal

component of the mass flux of cations, = ( )+ + +
⊤J JJ ,x y, , , entering

the SEI from the electrolyte,

( ) = ( ) [ ]+i L y t zFJ L y t, , , , , 9x xSEI, 1 , 1

which ensures mass conservation of cations across the SEI/electro-
lyte interface. In addition to 8 and 9, we also enforce a minimum Li+

concentration condition at the SEI/electrolyte interface,3

∂
∂

( ) = [ ]+c

x
L y t, , 0. 101

At the interface between the SEI and the electrolyte, we enforce
continuity of the electric potential and the normal components of the
current density,

ϕ ϕ( ) = ( )
( ) = ( ) [ ]
L y t L y t

i L y t i L y t

, , , , ,

, , , , , 11x x

SEI 1 el 1

SEI, 1 el, 1

The rate of change of Li-metal surface height h(y, t) is given by
the current density into the anode,

ω· ∂
∂

= − [ ]h

t

I

zF
e n . 12x

The curvature and the normal vector are related to the surface
function h(y, t),35

κ=
+ (∂ )

−
∂ = −
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The boundary conditions on the remaining segments of the
computational domain are

ϕ = = = = [ ]+ −c c c c x L0, , , for ; 14ael 0 0

ϕ∂
∂

= ∂
∂

= ∂
∂

= = [ ]+ −

y

c

y

c

y
y B0, 0, 0, for 0 and . 14bel

Linear Stability Analysis

The linear stability analysis introduces a small perturbation
ε ( + )wt ikyexp to a one-dimensional steady-state base state. This
base state is defined by a flat electrode surface h(0)(t) ≡ Ut moving at
constant velocity U= dh/dt=ωI(0)/(zF), along with corresponding
profiles for electric potential φ(0)(x), cation concentration ( )+

( )c x0 , and

anion concentration ( )−
( )c x0 .3 The goal is to derive a dispersion

relation that links the perturbation growth rate w (s−1) to its
wavenumber k (m−1). The perturbation on the surface of the
electrode and the state variables are

ε ϕ ϕ εϕ
ε ε ε

= ( ) + ˆ = ( ) + ˆ
= ( ) + ˆ ˆ = [ ]

( ) ( ) ( ) ( )

± ±
( )

±
( ) +

h h t h x

c c x c

, ,

, e , 15wt iky

0 1 0 1

0 1

where the constant h(1) and the functions φ(1)(x) and ( )±
( )c x1 are first-

order (in ε) corrections to the base state denoted by the superscript (0).
If the perturbation increases with time, indicating a positive

growth rate (w> 0), the electrodeposition process is considered
unstable and susceptible to dendrite initiation. If the perturbation has
a negative growth rate for all wavelengths, any dendrite initiation,
equivalent to a small perturbation at the electrode surface, would
decay over time, and the electrodeposition process is considered
stable and flat.

It follows from Eq. 13 that first-order approximations of its unit
normal vector, ε= + ( )( ) n n 0 2 , and curvature, κ κ εκ= + ˆ( ) ( )0 1 , are
given by

κ κ= − = = [ ]( ) ( ) ( ) ( )⎛
⎝

⎞
⎠

k
hn 1

0
, 0,

2
. 160 0 1

2
1

Derivations for the base-state and the perturbed-state Eqs. are
displayed in Appendix A. We solve the resulting boundary-value
problems (BVPs) for the base state (of order ε0) and the first-order
correction (of order ε). The results are reported below in terms of
dimensionless growth rate, wavenumber, and current density,

σ σ
˜ = ˜ = ˜ = [ ]w

wF c L

RT
k kL I

ILF

RT
, , and . 17

2
0

2

SEI SEI

Results and Discussion

The parameters used in our simulations are presented in Table I.
We first perform numerical simulations to compute the base-state
solutions under varying applied electric potentials, φe, to establish
the steady-state profiles of ionic species concentrations and the
electric potential distribution across the SEI and electrolyte domains.
Figure 2 shows the dimensionless concentrations of cations, +̃

( )c 0 , and

anions, ˜−
( )c 0 ; charge density ρ̃ = ˜ − ˜( )

+
( )

−
( )c ce

0 0 0 ; and electric potential

ϕ̃( )0 . The SEI layer occupies the region ξ⩽ ˜ ⩽0 0.04. For small
values of the applied potential, φe =− 0.1 V, the cations at the SEI/
electrolyte interface are not depleted, and electroneutrality holds in
the liquid electrolyte domain. Within the SEI, +̃

( )c 0 remains constant

while ˜ =−
( )c 00 as the SEI is a Li+ conductor and is impermeable to

anions. At larger values of φe, the Li
+ concentration ξ˜ ( )+

( )c 0 becomes
nearly zero near the electrode surface, and local electroneutrality is
violated within the electrolyte boundary layer ( ξ⩽ ˜ ⩽0.04 0.2).
As a result, the charge density ρ̃( )

e
0 in the SEI is higher under small

applied potentials than under large ones, since cation depletion
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Table I. Parameters used in the simulations.

Parameter Symbol Value Unit References

Half-cell length L 0.5 μm Ref. 3
Cation diffusivity D+ 1.61 · 10−11 m2 s−1 Ref. 36
Anion diffusivity D− 3.91 · 10−11 m2 s−1 Ref. 36
Temperature T 298.15 K Ref. 3
Molecular weight of lithium metal M 6.941 g/mol Ref. 37
Density of Li-metal ρ 0.534 g/cm3 Ref. 37
Li+ bulk concentration c0 1000 mol m3 Ref. 3
Standard concentration cΘ 1000 mol m3 Ref. 3
Standard electrode potential EΘ 0 V
Dielectric constant ϵ/ϵ0 90 — Ref. 38
Vacuum permittivity ϵ0 8.854 · 10−12 F m−1 Ref. 39
Reaction rate constant k0 2.7 · 10−3 mol/m2 s−1 Ref. 40
Surface energy of metal/electrolyte interface γ 1 J m2 Ref. 41
Activity coefficient of the transition state γts 1 —

Reference ionic conductivity of the SEI σref 1 · 10−3 S m−1 Ref. 13
SEI thickness L1 20 nm Ref. 6

Figure 2. Spatial profiles of the base-state cation, +̃
( )c 0 , and anion, ˜−

( )c 0 , concentrations; charge density ρ̃ = ˜ − ˜( )
+
( )

−
( )c ce

0 0 0 ; and electric potential ϕ̃( )0 for SEI ionic
conductivity σSEI = 10−3 S m−1 and at applied electric potentials φe = − 0.1 V and −2 V.
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occurs near the SEI/electrolyte interface at higher potentials. As
shown in Fig. 2, increasing φe leads to a steeper electric potential

gradient, ϕ∂ ˜ξ̃
( )0 , near the SEI/electrolyte interface. These trends are

consistent with previously reported base-state profiles in the absence

of an SEI layer.3 Additionally, the electric potential ϕ̃( )0 exhibits a
linear drop across the SEI, from the SEI/electrolyte interface to the
Li/SEI interface. The slope of this drop, σ˜ / ˜( )I 0

SEI , increases with the
magnitude of the applied current density (applied electric potential).

Figure 3 shows the dispersion relations, ˜ = ˜ ( ˜)w w k , where the
non-dimensional growth rate w̃ is plotted against the wavenumber k̃
for various SEI ionic conductivities. As k̃ increases, the growth rate
initially rises, reaching a peak at the maximum growth rate w̃max ,
and then declines. Beyond a critical wavenumber k̃ cri , the growth
rate becomes negative, indicating the onset of morphological
stability, i.e., Li deposition becomes stable and dendrite formation
is suppressed. This stabilization arises from the surface energy
penalty on the creation of additional surface area. This penalty is
quantified by the term proportional to capillary number that
corresponds to the interfacial energy between the Li-metal and
SEI, CaLi

SEI, or between the Li-metal and electrolyte in the absence of
SEI, CaLi

el , in Eqs. 18 and 20. Wavenumber k̃ is related to the non-
dimensional surface roughness wavelength λ λ˜ = /L by λ π˜ = /k̃2 .34

Thus, using Li-metal anodes with surface roughness wavelengths
smaller than the critical wavelength can help mitigate dendritic
growth. Increasing the SEI ionic conductivity leads to a lower
maximum growth rate w̃max and a smaller critical wavenumber k̃ cri .
This implies that a more ionic conductive SEI layer expands the
range of stable modes and effectively suppresses dendrite growth.
This trend aligns well with experimental findings, which have
reported enhanced stability with more ionic conductive SEI
materials.13 Moreover, we find that the critical wavenumber scales
inversely with the square root of the SEI ionic conductivity, i.e.,

σ˜ ∝ / ˜k 1cri SEI . This scaling relationship is also derived analytically
and discussed in detail in Appendix B. Physically, this relationship
highlights how improved ionic transport in the SEI reduces the
electric field gradient and charge accumulation at sharp interface
perturbations, thereby stabilizing the deposition front.34

We next derive analytical expressions for the dispersion relations
under both underlimiting and overlimiting current conditions.
Detailed derivations are provided in Appendix B. The resulting

relations ˜ = ˜ ( ˜)w w k , describe the growth rate w̃ of perturbations as a
function of non-dimensional wavenumber k̃ and system parameters.
Under low and high current regimes, the dispersion relations in the
presence of a SEI layer are:

˜ = [ ]

σ

σ

σ

σ

( ˜ / ˜ − ˜ )

/ ˜ − / ( ˜ ˜) + ˜ / ˜
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z

0
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SEI

cat
0

0 1 SEI

0
SEI

2
Li
SEI

cat
0

0
0

1 SEI

that involve non-dimensional wavenumber k̃ , current density ˜( )I 0 ,
SEI ionic conductivity and thickness σ̃SEI and L̃1, Li+ diffusion
coefficient in the electrolyte +̃D , reaction rate constant k̃0 and
capillary number that is related to the interfacial energy between

SEI and Li-metal = ωγ
Ca

RTLLi
SEI Li

SEI

. The base-state variables ξ˜ ( ˜)+
( )c 0 and

ϕ ξ˜ ( ˜)( )0 , along with α η̃α
( )

e zcat
0
and coefficients A, B, and K, are defined

in Eqs. B.12, B.3, B.9c and B.7b, and evaluated at ξ̃ = L̃1. For both
underlimiting and overlimiting conditions, the critical wavenumber
k̃ cri , defined as the threshold beyond which the perturbations are
stabilized and the interface becomes stable, is given by

σ
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˜

˜
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Figure 4 presents a comparison between the numerical and analytical
dispersion relations for both underlimiting (φe =− 0.1 V) and over-
limiting (φe =− 2 V) conditions, with the presence of a SEI layer.
Since the numerical simulations are performed under a constant
applied voltage, we first solve the base-state Eqs. numerically

(Appendix A). Using the base-state variables ξ˜ ( ˜)±
( )c 0 and ϕ ξ˜ ( ˜)( )0 ,

we calculate the current density ˜( )I 0 , which is then used in the
analytical dispersion relations. As shown in Fig. 4, the numerical and
analytical solutions are virtually indistinguishable for both under-
limiting and overlimiting current conditions. This confirms that the
analytical model accurately captures the dispersion relations and can
reliably predict the critical wavenumber k̃ cri .

We also derive analytical expressions for the dispersion relations
in the absence of a SEI layer, considering both underlimiting and
overlimiting current conditions:
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These relations depend on the non-dimensional wavenumber k̃ , the

current density ˜( )I 0 , the Li+ diffusion coefficient +̃D , and the
capillary number CaLi

el (which characterizes the interfacial energy
between the electrolyte and Li-metal) as well as the reaction

parameter k̃0; α η̃α
( )

e zcat
0

is defined in Eq. B.12; the base-state

quantities, +̃
( )c 0 , ϕ̃( )0 , and ϕ ξ∂ ˜ /∂ ˜( )0 are given in Eqs. B.3 and B.9c

for underlimiting and overlimiting conditions, respectively, and
evaluated at ξ̃ = 0. The corresponding critical wavenumbers are:
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Figure 3. Dispersion relations ˜ = ˜ ( ˜)w w k with different SEI layer ionic
conductivities σSEI = 10−2, 10−3 and 10−4 S m−1 and at applied electric
potential φe = − 2 V.
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where λ̃ = ϵ
D

RT

L F c2 2 2
0

is the Debye length. Figure 5 shows a

comparison between numerical and analytical dispersion relations
for underlimiting (φe =− 0.1 V) and overlimiting (φe =− 2 V)
conditions in the absence of a SEI layer. Figure 5 demonstrates
that the numerical and analytical solutions are virtually indistin-
guishable for both underlimiting and overlimiting conditions, with
the critical wavenumber k̃ cri accurately captured.

We next construct stability diagrams using the analytical expres-
sions for the critical wavenumber k̃ cri with and without SEI, as given
in Eqs. 19 and 21. We set σref= σSEI to non-dimensionalize the model
parameters and current density and explore the influence of SEI
properties on dendrite suppression in the non-dimensional phase
space. These stability diagrams elucidate how SEI-electrolyte dyads
affect the morphological stability of the Li-electrolyte interface.
Figure 6 presents stability diagrams under underlimiting conditions,
spanned by two non-dimensional ratios: SEI ionic conductivity to
electrolyte cation diffusivity, σ̃ / +̃DSEI , Li/SEI to Li/electrolyte capil-
lary number (interfacial energy) ratio, /Ca CaLi

SEI
Li
el , across various

current densities, ˜ = ×( ) −I 1.9 100 3, 1.9× 10−2 and 1.9× 10−1. The

solid blue lines indicate the stability boundaries where the critical
wavenumbers, k̃ cri , are equal with and without the SEI. To the right of
these boundaries (blue-shaded region), the SEI contributes a stabi-
lizing effect (k̃ cri is lower with SEI than without); to the left, it has a
destabilizing effect. The dash-dotted black lines represent the limiting

current density ˜ = ˜( )
+I D2lim

0 , above which the underlimiting assump-
tions break down due to cation depletion (˜ →+c 0) predicted by
Eq. B.3. These results show that a SEI with high interfacial energy
with Li and high ionic conductivity effectively suppresses dendrite
growth. The benefit of SEI is especially pronounced when the
electrolyte exhibits low cation diffusivity and low interfacial energy
with Li. It is important to note that this does not imply that such an
electrolyte alone offers better stability; rather, it highlights that the
addition of a SEI significantly improves stability in systems that are
otherwise more prone to instability. We further elucidate the effects of
SEI-electrolyte pairings. While high ionic conductivity and interfacial
energy with Li in the SEI are generally favorable for enhancing
interfacial stability, these ideal properties may not always be achiev-
able in practice. In such cases, even a SEI with low conductivity or
interfacial energy can still help suppress dendrites in systems when the

Figure 4. Comparison of numerical and analytical dispersion relations under underlimiting (φe = − 0.1 V) and overlimiting conditions (φe = − 2 V) in the
presence of a SEI layer.

Figure 5. Comparison of numerical and analytical dispersion relations under underlimiting (φe = − 0.1 V) and overlimiting conditions (φe = − 2 V) in the
absence of a SEI layer.
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electrolyte has lower cation diffusivity or interfacial energy with Li.
Conversely, when the electrolyte exhibits high diffusivity or inter-
facial energy, the SEI must also possess correspondingly high ionic
conductivity and interfacial energy with Li to maintain stability. These
findings highlight the importance of tailoring SEI properties in
response to the specific electrolyte characteristics to optimize dendrite
suppression.

Figure 7 displays the stability diagrams under overlimiting
current conditions in the non-dimensional phase space of

λ/( ˜ )Ca CaLi
SEI

D Li
el versus σ̃ / +̃DSEI for various current densities,

˜ = ×( )I 9.7 100 2, 9.7× 103 and 9.7× 104. The dashed red lines
separate the stable (red-shaded) and unstable regions, where the
inclusion of a SEI layer stabilizes or destabilizes the interface,
respectively. The dash-dotted black lines again represent the limiting

current density ˜ = ˜( )
+I D2lim

0 ; below these lines, the overlimiting
assumptions break down as the cation concentration ˜+c diverges
according to Eq. B.9c. Consistent with the underlimiting diagrams,
SEI layers with high ionic conductivity and high interfacial energy
with Li promote interfacial stability. Under overlimiting conditions,
the stability behavior is also influenced by the Debye length λ̃ D of
the electrolyte: a smaller Debye length (equivalent to lower
permittivity ϵ) implies a thinner double layer and is associated
with enhanced dendrite suppression. This underscores the role of
local charge accumulation, as dendrite growth is exacerbated when

the local charge density ρ̃ = ˜ − ˜( )
+
( )

−
( )c ce

0 0 0 intensifies within the
diffuse layer.

To compare both regimes, Fig. 8 presents stability diagrams for
underlimiting and overlimiting conditions in the ( ˜ /( )I , Ca Ca0

Li
SEI

Li
el)

phase space for varying σ̃ / +̃DSEI . The dash-dotted lines indicate the
boundaries between underlimiting and overlimiting regimes at
˜ = ˜( )

+I D2lim
0 . Analytical expressions for the critical wavenumber kcr

are used here; however, more accurate predictions near the transition
regime could be obtained using numerical solutions. The blue and red
shaded regions indicate parameter combinations where the inclusion
of a SEI layer stabilizes the interface compared to the no-SEI scenario.
A high interfacial energy ratio /Ca CaLi

SEI
Li
el or larger SEI ionic

conductivity to electrolyte diffusivity ratio σ̃ / +̃DSEI enlarges the stable

regions for both current conditions and a high current density ˜( )I 0 also
expands the stable regions for underlimiting conditions. However,
under overlimiting conditions, a larger current density ˜( )I 0 shrinks the
stable regions, as reflected in the scaling behavior of the critical
wavenumbers: ˜ ∝ ˜ /k Icri

1 2 with a SEI layer and ˜ ∝ ˜ /k Icri
1 4 without

SEI. When transitioning from underlimiting to overlimiting regimes,
the overall stability regions expand. Under low-current (under-
limiting) conditions, stabilization requires a SEI with high interfacial
energy, while at high-current (overlimiting) conditions, even a small

Figure 6. Stability diagrams under underlimiting conditions in the non-dimensional phase space of SEI ionic conductivity to electrolyte cation diffusivity ratio,
σ̃ / ˜+DSEI , and interfacial energy (capillary number) ratio, /Ca CaLi

SEI
Li
el , for various current densities ˜ = × × ×( ) − − −I 1.9 10 , 1.9 10 , 1.9 100 3 2 1. Solid blue lines

mark stability boundaries where the critical wavenumbers k̃ cri are equal with and without SEI. To the right (blue-shaded region), the SEI stabilizes the interface;
to the left, it destabilizes it. Dash-dotted black lines indicate the limiting current density ˜ = ˜( )

+I D2lim
0 , above which underlimiting assumptions break down due to

electrolyte depletion (˜ →+c 0).

Figure 7. Stability diagrams under overlimiting conditions in the non-dimensional space of λ/( ˜ )Ca CaLi
SEI

D Li
el versus σ̃ / ˜+DSEI for current densities

˜ = × × ×( )I 9.7 10 , 9.7 10 , 9.7 100 2 3 4. Dashed red lines separate stable (red-shaded) and unstable regions, where the SEI layer suppresses or promotes
dendrite growth, respectively. Dash-dotted black lines mark ˜ = ˜( )

+I D2lim
0 , below which the overlimiting assumptions are invalid due to divergence in ˜+c .
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interfacial energy ratio is sufficient for stabilization compared to the
no-SEI case. This trend reflects the changing interfacial dynamics,
where space-charge layers and non-electroneutral effects dominate
under overlimiting currents. In this regime, the SEI acts as a buffer
that moderates the electric field and space-charge accumulation near
the anode surface, reducing the driving force for dendrite formation—
even when its interfacial energy is modest. These comparison plots
highlight the fundamentally different stabilization mechanisms across
the two limiting current conditions and emphasize the importance of
relaxing the electroneutrality assumption when studying dendrite
initiation under high current densities.

Our results also quantify the impact of SEI thickness, L̃1, on
dendrite growth. According to Eq. 19, at any given current density
˜( )I 0 , the critical wavenumber k̃ cri is independent of L̃1, under both
underlimiting and overlimiting conditions. However, L̃1 does impact
the maximum growth rate w̃max , with the nonlinear dependence of the
growth rate on the SEI thickness, ˜ = (˜ ˜ )w w L1 , given by Eq. 18. These
relations reveal a complex interplay among SEI thickness, current
density, and the transport properties of both the SEI and the
electrolyte. Thus, tuning SEI thickness offers an additional design
parameter for improving dendrite suppression, complementing strate-
gies that focus on transport characteristics and interfacial energy.

Conclusions

We investigate the impact of SEI-electrolyte dyad properties on
dendrite growth in LMBs by performing a physics-based linear
stability analysis of dendrite initiation. This model explicitly
incorporates a SEI layer between the Li-metal anode and the
electrolyte while relaxing the electroneutral assumption. Our ana-
lysis considers how SEI transport properties (e.g., ionic conduc-
tivity), thickness, and interfacial energy at the Li-SEI interface
interact with electrolyte characteristics (e.g., diffusion coefficient,
permittivity, and Li-electrolyte interfacial energy) and operating
conditions (current density or applied voltage) to determine inter-
facial stability. Our key results are the analytical expressions that
relate the instability growth rate of dendrite initiation to both
material properties and battery operating conditions for both under-
limiting and overlimiting current conditions. We derive and compare
the growth rate expressions with and without the presence of a SEI
layer, revealing its crucial role in dendrite suppression. Our analysis
leads to the following major conclusions:

• SEI properties play a significant role in influencing both the
dendrite growth rate and the critical wavenumber. Under the same
current density and system parameters, a higher SEI ionic

conductivity results in a smaller critical wavenumber, indicating
enhanced interfacial stabilization. While the critical wavenumber is
independent of SEI thickness in both under- and overlimiting
regimes, the maximum growth rate is affected by SEI thickness.

• Interfacial stability is promoted by a high dimensionless SEI
ionic conductivity-to-electrolyte diffusivity ratio and a high Li/SEI-
to-Li/electrolyte interfacial energy ratio. A smaller Debye length, or
equivalently a lower electrolyte permittivity, implies a thinner
electric double layer and improves dendrite suppression by reducing
space-charge accumulation near the solid/liquid interface.

• High current density broadens the stability window in the
underlimiting regime but narrows it in the overlimiting regime.
These results emphasize the need to go beyond the electroneutral
approximation when modeling dendrite behavior at high current
densities.

• Crucially, interfacial stability is governed not by SEI properties
in isolation but by SEI-electrolyte dyads—the coupled property
interactions that define the stability phase space.

These findings offer several key design principles for interfacial
stabilization. First, SEI transport properties and interfacial energy
must be co-optimized with electrolyte properties; a SEI formulation
that is effective in one electrolyte environment may be ineffective in
another. Second, dendrite suppression mechanisms differ fundamen-
tally across current regimes: dendrite initiation in underlimiting
regimes is governed by ion concentration gradients, whereas over-
limiting regimes are dominated by electric potential gradients and
space-charge effects. Therefore, predictive design requires models
that go beyond the electroneutral approximation to accurately
capture dendrite behavior at high current densities.

Our results motivate the rational design of artificial SEI layers as
a route to stabilize Li-metal anodes. Transport properties (ionic
conductivity and diffusivity), SEI thickness, and interfacial energy
with Li-metal should be treated as tunable design variables that
depend on the operating regime and electrolyte environment. Future
work will incorporate mechanical effects and fracture criteria to
provide a more comprehensive understanding of SEI failure and
dendrite propagation, ultimately enabling predictive models for next-
generation, high-performance LMBs.

Appendix A: Perturbation Analysis

We introduce dimensionless variables

σ˜ = ˜ = ˜ = ˜ = [ ]x
x

L
y

y

L
t

t RT

F c L
c

c

c
, , , , A.1aref
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Figure 8. Stability diagrams combining underlimiting and overlimiting regimes in the non-dimensional phase space of current density ˜( )I 0 and interfacial energy
ratio /Ca CaLi

SEI
Li
el , for varying σ̃ / ˜ = × × ×+

− − −D 2.7 10 , 2.7 10 , 2.7 10SEI
4 3 2. Dash-dotted lines indicate the transition at ˜ = ˜( )

+I D2lim
0 . Shaded blue and red regions

represent parameter regimes where the SEI layer enhances stability relative to the no-SEI case.
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We define also the capillary number
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and the normalized interfacial current density

σ
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zRT
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where γLi
el is the isotropic interfacial energy of the Li-metal with the

liquid electrolyte (J/m2). Unless specified otherwise, all notations will
be dimensionless even if we drop the tildes. Substituting Eq. 15 into the
dimensionless form of Eqs. 1–14, and collecting the terms of order ε0

and ε1 leads to the base-state and perturbed-state BVPs. The boundary
conditions on the evolving electrode surface, Γin(t), represented by
points (y, h(y, t))⊤, are derived by approximating the values of
φSEI(x∈ Γin, t), c±(x∈ Γin, t), and their gradients. This approximation
is performed by expanding these quantities using a Taylor series around
the base state Γ = = ( ) = ⩽ ⩽( ) ⊤ ( )x y x h y Bx , : , 0in

0 0 . Full details of
this expansion can be found in Ref. 3. The current density I is expanded
to first order, ε= + ˆ( ) ( )I I I0 1 , the components I(0) and I(1) are given by
Eq. A.2c.

We rewrite the BVPs in terms of a moving coordinate system
associated with the electrode-electrolyte interface (ξ ≡ x− Ut, y) as
the interface h(0)(t) moves with velocity U= dh(0)/dt=ωI(0). The
linear stability analysis applies to the early stages of dendrite
formation, where Ut= L1 and, given that L1 = 1, we have Ut= 1.

A.0.1. Solid-electrolyte interphase (SEI).—The base-state and
perturbed-state dependent variables ϕ ξ( )( )

SEI
0 and ϕ ξ( )( )
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satisfy the one-dimensional Laplace equations,
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In Equation A.2b, we employ this expansion such that
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A.0.2. Liquid electrolyte.—The base-state and perturbed-state
dependent variables ξ( )±

( )c 0 , φ(0)(ξ), ξ( )±
( )c 1 and φ(1)(ξ) satisfy the

one-dimensional differential equations
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Eqs A.5a–A.5c are subject to the boundary conditions at ξ= L1,
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We solve the base-state Eqs. A2 and A5 with n = 0 in the SEI
and liquid electrolyte numerically with the Matlab function pdepe

to obtain ξ( )±
( )c 0 , φ(0)(ξ), and their first- and second-order derivatives.

These are then used as coefficients in the perturbed-state Eqs. A2
and A5 with n = 1. We employ a second-order finite-difference
scheme3 and obtain the resulting generalized eigenvalue problem,
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which is subsequently solved with the Matlab function eigs to
compute the dispersion relation w= w(k). Moreover, we derive the
conditions for interfacial stability both with and without the

α α ϕ
=

( / − ) =

+ ( − ) + ( ˆ − ) =
[ ]α η

η

η
( ) −

+
( ) Θ

ˆ ( ) ( )
α

α

α

( )

( )

+
( )

+
Θ

( ) +
( )

Θ

⎧

⎨
⎪

⎩⎪
⎧
⎨⎩

⎡
⎣

⎤
⎦

⎫
⎬⎭

I k
c c e n

e z k h n
e

0

1 Ca 1
, A.2cn z

z

c

c
z c

c

0

0

cat cat SEI

1 2
Li
SEI 1

cat
0

0

1 0 0

Journal of The Electrochemical Society, 2025 172 070524



inclusion of a SEI layer; these conditions are obtained analytically in
Appendix B.

Appendix B: Analytical Stability Criteria

We obtain the analytical expression of the spatial distribution of
the electric potential in the SEI layer by solving the BVPs described
in Eqs. A.2a-A.2b
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B.1. Underlimiting current conditions.—Under low current
density, the electrolyte is locally electroneutral, we have,
c= c+= c−= ezφ, that satisfies mass conservation in the electrolyte
(Eq. 2) and boundary condition in Eq. 14. Employing the perturbations
of c± and φ in Eq. 15 and applying Taylor series expansion yields
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Under local electroneutrality and assuming that w=Dk2 in Eq. A.5a
with n = 1, i.e., that the temporal fluctuations of the first-order
perturbation ξ( )+

( )c 1 are negligible, the perturbed-state Eq. A.5a reduces to

ξ
ξ= < < [ · ]+

( )

+
( )c

k c L
d

d
, 1, B 4

2 1

2
2 1

1

whose solution is ξ β ξ β ξ( ) = ( ) + (− )+
( )c k kexp exp1

1 2 . The constants
of integration β1 and β2 are obtained from the boundary condition in
Eq. A.5e with n = 1,
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We then employ this solution +
( )c 1 in Eq. A.4 and obtain the

dispersion relation
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The critical wavenumber, kcri, is a wavenumber k for which w =
0. It follows from Eq. B.7a that
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B.2. Overlimiting current conditions.—Under high current
density, as the electric potential gradient is large close to the

liquid/solid interface, we assume ϕ
ξ

( )d

d

2 1

2
and k2φ(1) dominate in

Eq. A.5b,

ϕ
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whose solution is ϕ ξ ζ ξ ζ ξ( ) = ( ) + (− )( ) k kexp exp1
1 2 . In Eq. A.5a

with n = 1, we assume
ξ
+
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d

1

and ϕ+
( )

+
( )z j c0 1 are negligible compared to

ϕ+ +
( ) ( )z c j0 1 , the boundary condition =+
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SEI

1 in Eq. A.5d can be
written as
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where we adopt the analytical expression for base-state +
( )c 0 and ϕ

ξ
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d

0

in Ref. 35 under overlimiting condition,
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The constants of integration ζ1 and ζ2 are obtained from boundary
condition in A.5e with n = 1,

ϕ ξ= = [ ]( ) 0, 1, B.9d1

and by substituting Eq. B.1 into Eq. A.2c with n = 1 while ignoring
the diffusion contribution in I(1) and combining the resulting
equation with Eq. B.9b. We employ this solution in Eq. A.4 and
the resulting dispersion relation is

σ
σ

=
( / − )

/ − /( ( )) + /
[ · ]

α η

( )

+ +
( )α

( )w
K zI k

k AK D kc L KL z

Ca

e
, B 10

z

0
SEI

2
Li
SEI

0
0

1 1 SEI
cat

0

with K and A given in Eq. B.7b. The critical wavenumber, kcri under
high current density is

σ
= [ · ]
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When αcat = 0.5, Eq. A.2c with n = 0 can be solved for α ηα
( )

e zcat
0
,

yielding an expression in terms of ( )+
( )c L0

1 , k0, c
Θ, and I(0),

=
( )/ + −

[ · ]α η +
( ) Θ ( ) ( )

α
( ) k c L c I I

k
e

4

2
. B 12z 0

2 0
1

0 2 0

0

cat
0

α α= ( − ) +
( )

= −
+

= +
( )

[ ]η +
( )

Θ

( − )

( − ) Θ
+
( )

α
( )

K e
c L

c
A B

c

K

c L
1 ,

e e

e e
,

1
. B.7bz

kL L k

kL L kcat cat

0
1

2

2 0
1

0 1 1

1 1

Journal of The Electrochemical Society, 2025 172 070524



B.3. Without SEI.—We also derive the analytical expressions
for the dispersion relations under low and high current conditions in
the absence of a SEI layer. By setting L1 = 0 and expanding
φ(x ∈ Γin, t), c±(x ∈ Γ, t), and their gradients in a Taylor series
around the base state Γ = { = ( ) = < < }( ) ⊤ ( )x y x h y Bx , : , 0in

0 0 ,3

and following a derivation similar to the case with SEI, we obtain the
dispersion relation for underlimiting current conditions,
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and for overlimiting current conditions,
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The base-state quantities +
( )c 0 , φ(0), and dφ(0)/dξ, along with α η̃α

( )
e zcat

0
,

which appear in the dispersion relations in Eqs. B.13 and B.14, as
well as in the coefficients A, B, and K (defined in Eq. B.7b), are
given by Eqs. B.3 and B.9c for the underlimiting and overlimiting
current conditions and Eq. B.12, and are evaluated at ξ= 0. The
critical wavenumbers kcri are
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